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Abstract. In this work we consider foliations of compact manifolds
whose holonomy pseudo-group is expansive, and analyze their number
of compact leaves. Our main result is that in the codimension-one case
this number is at most finite, and we give examples of such foliations
having one compact leaf.

1. Introduction

Let M be a compact manifold and F a foliation on it. In this work we
will be concerned with understanding possible restrictions for the number
of compact leaves that F may have, provided that its holonomy pseudo-
group has some rich dynamics. Concretely, we will consider F having an
expansive pseudo-group: in this case F is said to be an expansive foliation.

This type of question is of course very natural, and has its roots in the
analogous problem for group actions. For the classical case when one has a
(say, smooth) action of R or Z on M the answer is known: any such action
has countably many closed orbits (periodic points). We note here that in
the rank-one case there are no expansive actions of codimension-one.

It turns out that there exist codimension-one expansive foliations. The
contribution of this work to the theory consists precisely in answering the
aforementioned question in this setting.

Theorem A. Let F be a C1,0+ expansive codimension-one foliation of a compact
boundaryless manifold. Then it has at most finitely many closed leaves.

Observe also that due to Reeb’s stability, if F is expansive then any
closed leaf has to have infinite holonomy.

In Section 4 we indicate how to use examples given by S. Hurder of
expansive actions in order to get codimension-one foliations having closed
orbits, and also with exceptional minimal sets. The proof of Theorem A
diverges from the arguments used in the classical case, relying instead in
a variation of the Epstein hierarchy for compact foliations [Eps72].
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For completeness, let us mention that in general codimension the num-
ber of compact leaves is at most countable. See Theorem 3.1. The orbit
foliation of an Anosov flow provides an example of an expansive foliation
with infinitely many closed leaves.

We highlight the following direct consequence of our main Theorem.
For the definition of expansivity in actions see the next section.

Corollary A. Let Φ be a C1 locally-free action of a Lie group G acting on a
compact boundaryless manifold M, with dim M − dim G = 1. If Φ is expansive
then it has at most finitely many compact orbits.

Expansive actions on manifolds and foliations. Expansivity has always
played an important role in classical dynamical systems. As a weak form
of sensitivy to initial conditions, it was noted as a useful property of hy-
perbolic systems, such as geodesic flows in negativively curved compact
manifolds [Ano67], which led to its isolation for study. See the treatises
[HK03] and [DGS76] for further discussion.

To give some significative examples in the case of Zd, d ≥ 1 actions
we mention the classical work of Ruelle [Rue04], who made extensive use
of expansivity for studying interactions in lattices, and of Katok-Schmidt,
who initiated the study of the rigidity properties of such actions. Expan-
sive actions of more general groups acting on the circle were considered
in the precursor work of Hurder [Hur00]. More recent contribution for
general groups can be found in the work of Bonomo et al. [BRV17], and
of Arbieto-Rego [AR22].

As for pseudo-groups, foliations with expansive holonomy were intro-
duced by Inaba and Tsuchiya in [IT92], work that motivated what it is
done here. We would like to point out that we have purposely kept our
bibliography to a minimum in order to simplify the reading, and only
mentioned some representative examples. The reader will be more served
by looking at the references in the more recent works cited above.
Organization. In section 2 we present precise definitions for the concepts
used throughout the text and state some known results. In section 3 we
prove our main results, starting with Theorem 3.1, which is simpler, and
then building to A, in particular with a discussion of Epstein’s hierarchy.
Lastly, in section 4 we explain how to use some examples of [Hur00] to
show optimality of our results.

2. Preliminaries

In this section we establish notation and collect some basic definitions
and results. To keep the discussion succinct, it is assumed that the reader
is acquainted to basic foliation theory as discussed for example in [CC00].

Unless otherwise stated, M denotes a closed (compact, boundaryless)
Riemmanian manifold of dimension m. Its induced distance is denoted by
dM.
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2.1. Basic concepts.
C1,+0-foliation. By a C1,+0-foliation on M we mean a partition F = {Lx}x∈M
into p-dimensional submanifolds of class C1 (called the leaves of the folia-
tion), and such that

TF :=
⊔

x∈M

Lx

defines a continuous sub-bundle of TM. If TF is of class Cr−1, r ≥ 1 we
say that F is of class Cr.

It follows that each point x ∈ M has an open neighborhood U and
a homeomorphism ψU : (−1, 1)p × (−1, 1)m−p → U such that for every
w ∈ (−1, 1)m−p the map ψU(·, w) : (−1, 1)p × {w} → U is a C1 (Cr if
F is Cr) diffeomorphism onto a connected component of the intersection
of some leaf with U. In this case the image (which is a p-dimensional
embedded disc) is called a plaque of the foliation. The set U is a foliation
box of F , and a covering of M by foliation boxes is called a foliation atlas.

It is said that F has dimension p and codimension q = m − p.
Convention for the rest of the article. Unless otherwise stated, from now
on F denotes a C1,0+ foliation.

Example 2.1. Consider G a Lie group acting (smoothly) on a compact
manifold M, and suppose that the action is locally free, that is, for each x ∈
the stabilizer Gx is discrete. It is an almost direct consequence of Frobenius
theorem that {G · x}x∈M defines a foliation on M. This is referred to as the
orbit foliation induced by (the action of) G.

Holonomy. Let η0 > 0 be the injectivity radius of the exponential structure
associated to the metric of M. Given 0 < η ≤ η0 and x ∈ M we write

T(x, η) = {expx(v) : v ∈ Tx M, v ⊥ TLx, ∥v∥ < η}.

By reducing η0 if necessary it follows that T(x, η) is transverse to any
plaque of F : we refer to the set T(x, η) as a local transversal through x,
and write T(x) = T(x, η0).

A continuous curve γ : [a, b] → M is a F -curve if its image is contained
if some leaf of F . Given such a curve write x = γ(a), y = γ(b) consider
a finite partition t0 = a < t1 < . . . < tr = b so that γi = γ|([ti, ti+1]
is contained in a foliated box of F . By lifting γi to nearby plaques one
defines an embedding hγ : T(x, η) → T(y), where η is sufficiently small.
The map hγ is the holonomy transport defined by γ, and it is well known
that it only depends on the homotopy class of γ, provided that the x, y are
maintained fixed. See [CC00].

Definition 2.2. The holonomy pseudo-group of F is the set H(F ) that
consists of all possible hγ constructed as above.

The holonomy group of the leaf L at the point x is

Hx(L) := {germx(h) : h ∈ H(F ), h(x) = x}.
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It follows that Hx(L) is a group and there is a natural group epimor-
phism ΠL,x : π1(L, x) → Hx(L). Since for x, y in the same leaf the groups
Hx(L),Hy(L) are isomorphic we omit the dependence on the base point,
whenever is convenient.
Minimal and saturated sets. We say that A ⊂ M is saturated if it is a union
of leaves of F . If A is saturated and L ⊂ A is a leaf one can consider the
restricted holonomy group of L in A, H(L)|A = {h|A : h ∈ H(L)}.

Definition 2.3. Let A ⊂ M.

(1) A is a minimal set if it its compact, saturated and A does not contain
proper compact saturated subsets.

(2) A is an exceptional minimal set if it is minimal and A ̸= M and A is
not a compact leaf.

The foliation F is minimal if M is a minimal set.

By compactness of M, necessarily F has minimal sets.

Expansive foliations. The foliation F is expansive if there exists some ε >
0 such that if x ∈ M, y ∈ T(x, ε) \ x then there exists some holonomy map
h : T(x, η) → T(z) with y ∈ T(x, η) and dM(h(x), h(y)) > ε. The number ε
is said to be an expansive constant for F .

The original definition of expansive foliation given by Inaba and Tsuchiya
is presented in a different but equivalent way. See [Wal04a] for the perti-
nent discussion.

For codimension-one foliations one has the following characterization

Theorem 2.4 ([IT92]). A codimension-one foliation F is expansive if, and only
if, there is a finite family of open saturated sets U1, ..., Un such that

(1) If L ⊂ Ui, then L is dense in Ui, for i = 1, ..., n.
(2) The union

⋃n
i=1 Ui is dense in M.

Orientability of expansive foliations. The foliation F is said to be

• orientable if TF is orientable.
• transversely orientable if the normal bundle of TF is orientable.

Proposition 2.5 ([CC00], Proposition 3.5.1). There is finite covering space π :
M → M (of degree at most 4) and F a foliation on M such that

(1) π maps leaves of F diffemorphically onto leaves of F .
(2) M is orientable, and F is both orientable and transversely orientable.

Proposition 2.6. For π : M → M as above, if F is expansive then F is expan-
sive.

Remark 2.7. The same holds whenever π : M → M is a finite covering
space, and F is the pull-back foliation of F by π. We will not use this in
this article.
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Proof. Lift the Riemannian metric of M via π. Let ε > 0 be an expansive
constant for F and consider a covering U of M by foliation boxes, with di-
ameter so small that for each U ∈ U , π maps isometrically each connected
component of π−1(U) to U. The set U = {connected components of π−1(U) :
U ∈ U} is a covering by foliation boxes for F , and is clear that π conju-
gates isometrically each element of H(F ) to an element of H(F ) (by lifting
F -curves). From here it follows that ε is an expansive constant for F . □

Convention for the rest of the article. Due to the above we will consider
from now on that both F and the manifold are oriented.

Expansive actions. Let Φ : G × M → M be a (differentiable) action of a
group G which is either discrete or a connected Lie group. The action Φ
is expansive if

• Discrete case: there is ε > 0 such that if x, y ∈ M and x ̸= y, then there
is g ∈ such that dM(gx, gy) > ε.

• Continuous case [AR22]: for any ε > 0 there is δ > 0 satisfying the fol-
lowing. Given x, y ∈ M and h ∈ C0G, G with h(e) = e, supg∈G dM(h(g) ·
x, g · y) < δ, it holds that y = g0 · x for some g0 ∈ G with dG(g0, e) < ε

If Φ is an expansive locally-free action of a continuous Lie group, then
its orbit foliation is expansive. See Theorem 2.15 in [AR22].

2.2. Structure of the set of compact leaves. Denote

K(F ) :=
⋃
{L : L ∈ F , L compact}

For the proof of Theorem A we will study the holonomy of the induced
foliation in the saturated set K(F ), together with the following.

Theorem 2.8 (Haefliger [Hae62]). If F is of codimension one then K(F ) is
compact.

We also recall the classical stability Theorem due to Reeb.

Theorem 2.9 (Reeb Local Stability Theorem). Let E ⊂ M be a locally compact
saturated set and suppose that L ⊂ E is compact and satisfies #H(L)|E < ∞.
Then Lx has arbitrarily small saturated neighborhoods that consists of compact
leaves, and each one of these leaves L′ satisfies #H(L′)|E < ∞.

The version above can be found for example in Appendix A of [Car15].

3. Compact Leaves of Expansive Foliations

This section is dedicated to the proof of the our main result. Before
doing that we will discuss a more basic result stating that in general codi-
mension the number of compact leaves is at most countable.
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We recall that we are assuming that F is a C1,+0 expansive foliation
on the closed manifold M, which is both orientable and transversally ori-
entable (therefore M is orientable). We fix once and for all an expansivity
constant ε of F .

3.1. Countably many compact leaves. Let us first note:

Theorem 3.1. Let F be a C1,0+ expansive foliation of a compact boundaryless
manifold. Then it has at most countably many closed leaves.

Proof. For a subset A ⊂ L ∈ F denote by Vol(A) its volume with respect
to the induced Riemannian metric on L by M. Write

K(F ) =
⋃

N≥1

{L ∈ F : Vol(L) ≤ N} =
⋃

N≥1

KN .

It is enough to show that each KN consist of finitely many leaves. Assume
otherwise: consider a sequence (Ln)n ⊂ KN of pairwise different leaves
converging in the Hausdorff topology to some set A. Then A is compact,
connected and saturated.

Cover A with a finite family U1, ..., Uk of foliated boxes with diameter
smaller than ε. Denote

U =
k⋃

i=1

Ui.

Since Ln converges to A, for n big enough, we have Ln ⊂ U. Notice that we
can choose the neighborhoods Ui satisfying the following property: There
are v−, v+ > 0 such that v− ≤ Vol(P) ≤ v+, for every plaque P ⊂ Ui and
for every i = 1, .., k.

For n large the leaf Ln can intersect each Ui in at most N
kv− plaques, there-

fore it follows that A has finite volume, and is thus a compact leaf. This is
a contradiction, since Ln is uniformly ε-close to A for n large, therefore no
holonomy map can separate A and Ln, which contradicts the definition of
expansivity. □

3.2. Codimension-one expansive foliations - Proof of Theorem A. In
what follows we assume additionally that F has codimension one. Our
goal is to show that K(F ) contains at most finitely many leaves, and for
this we ellabore on its structure. We consider the filtration of sets {Bα}α

indexed by the ordinals, where

Bα =


B0 = K(F )

Bα = {x ∈ Bα−1; #H(Lx)|Bα−1 = ∞}, if α is a successor ordinal
Bα =

⋂
β<α Bβ, otherwise

This is a variation of the so called Epstein filtration of Bad Sets, introduced
in [Eps72] by D.B.A Epstein in the context of 3-dimensional flows whose
leaves are all compact, more See also [Vog94].
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Lemma 3.2. Each Bα is a compact saturated set, and there exists a successor
ordinal α0 such that Bα0−1 ̸= ∅ and Bα0 = ∅.

Proof. First, B0 is compact due to Theorem 2.8. The fact that each Bα is
compact in B0 is consequence of theorem 2.9. Clearly every Bα is saturated.

Let Ω be the first uncountable ordinal and suppose by means of contra-
diction that BΩ ̸= ∅. For each α < Ω choose xα ∈ Bα \ Bα+1, and consider
xα0 ∈ {xα}′ (which exists since {xα} is uncountable). Reeb stability theo-
rem now gives a contradiction, since points xα for α > α0 cannot enter any
foliated neighborhood of xα0 in Bα0 \ Bα0+1. □

Now we finish the proof of Theorem A, which essentially amounts of
showing that α0 = 0.

Suppose that there exists infinitely many compact leaves {Ln}n≥1 ⊂ B0
with Ln ∈ Bαn , and consider an accumulation point L in the Hausdorff
topology of this sequence. Since B0 is compact it follows that L is a com-
pact leaf, therefore L ∈ BαL for some ordinal αL. By Reeb’s stability we can
find U open saturated neighborhood of L in BαL \ BαL+1. It then follows
that for n large Ln ⊂ U. But U can be taken so that U ⊂ ⋃

x∈L T(x, ε
2 ),

which means that no holonomy separates L from Ln. This contradicts
expansivity of F .

4. Some examples of Expansive Foliations

This section is devoted to examples of expansive foliations.
Notation. F foliation, L ∈ F . For x ∈ M, r > 0 we write Lr(x) for the
open ball in L, centered at x and with radius r.

4.1. Anosov Actions. We start with invariant foliations associated to Anosov
Actions; see [PS72] for the undefined terms. Below G denotes a Lie Group
and Φ : G× M → M an Anosov action on the closed manifold G (in partic-
ular, locally free). For some regular element g ∈ G consider the associated
invariant foliations F c

g,F s
g,F u

g ,F cs
g ,F cu

g , the center (orbit), stable, unstable,
center-stable and center-untable foliatons respectively.

Hirsch, Pugh and Shub in [HPS77] considered a different type of expan-
siveness associated to these kind of foliations, which they coined “plaque
expansiveness”.

Definition 4.1. Let F be a foliation of a closed manifold M which is in-
variant by a homeomorphism f : M → M. For δ > 0, a sequence {xi}i∈Z

is said to be a δ-pseudo-orbit for F if

f (xi) ∈ Lδ(xi+1), ∀i ∈ Z.

Definition 4.2 (plaque-expansiveness). In the same setting as above F is
plaque-expansive if there exists δ > 0 so that for any two δ-pseudo-orbits
{xi} and {yi} for F satisfying supi∈Z dM(xi, yi) ≤ δ, one has x0 ∈ Ly0(δ).
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In Theorem 7.2 of [HPS77] it is proven that F c
g is plaque expansive,

which in turn implies without too much trouble that F cs
g ,F cu

g are plaque
expansive as well.

Proposition 4.3. Let Φ be a locally-free G-action on a closed manifold M and
suppose that there is some g ∈ G such that Φg is plaque-expansive. Then the
orbit foliation of Φ is expansive.

Proof. Suppose f (x) = g0 · x is plaque-expansive, and take 0 < δ ≤ η a
plaque expansivity constant of F that satisfies

y ∈ T(x, δ) \ {x} ⇒ Lδ(x) ∩ Lδ(y) = ∅.

By considering the sequences {xn = gn
0 · x = f n(x)}, {yn = gn

0 · y = f ny},
it follows by plaque-expansivenes that if y ∈ T(x, δ) \ {x} then necessarily
supn dM(xn, yn) > δ. This shows on each leaf L ∈ F the subgroup gener-
ated by f induces an expansive sub-group of H(L), which shows that F
is expansive. □

It follows from the above that F c
g is expansive, which in turn implies

that F cs
g ,F cu

g are also expansive. This is consequence of the fact that if an
expansive foliation F sub-foliates a foliation G (meaning, each leaf of G is
union of leaves of F ), then G is expansive, because in this case there is a
natural inclusion H(F ) ⊂ H(G).

The foliations F s
g,F u

g seem harder to deal with in general, but we can
deal with the algebraic case. We consider the following situation, which
encapsulates the case for typical algebraic Anosov actions and their corre-
spoding stable and unstable (horocyclic) foliations, see [KS].

Consider G a continuous semi-simple Lie group with finite center, non-
trivial compact factor, and let Γ < G be a uniform lattice. Write G = KAN
its Iwasawa decomposition and let X = Γ/G. Then N acts on X by right
multiplication, and this action is usually referred as a “horocyclic flow”.

Proposition 4.4. The orbit foliation of N is not expansive.

Proof. Indeed, expansive foliations have positive geometric entropy ([AR22]),
which in turn implies for foliated actions that their entropy (as actions) is
also positive. See for example the first part of Theorem 3.4.3 in [Wal04b].

It is well known, on the other hand, that the action of any unipotent
action (as the one defined by N on X) has zero entropy (cf. Theorem 7.6
in [EL08]). □

4.2. Codimension-one Expansive foliations with compact leaves. In what
follows we explain why the result of our Theorem A is sharp. Let us recall
that given B, F closed manifolds and a representation Γ : Π1(B) → Diffr(F)
one can construct a foliated fiber bundle π : EΓ → B with fiber B, whose
foliation F is transverse to the fibers; this is called the suspension of Γ
(with the corresponding data). In addition, the holonomy group of F is
conjugated to Γ. See [CC00].
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It follows in particular that if Γ is discrete and the action of Im(Γ) is
expansive on F, then F is an expansive foliation (of codimension dim F).

Example 4.5 (Codimension-one expansive foliation with a single compact
leaf). In Example 8.11 of [Hur00] S. Hurder gives an example of an expan-
sive action of a subgroup Γ = ⟨ f , g⟩ < Diff∞

+(S1) having a unique fixed
point, with minimal action on the complement: here Diff∞

+(S
1) denotes the

orientation preserving (smooth) diffeomorphisms of the circle.
Let Σ be the bitorus: then π1(Σ) ∼ ⟨a1, b1, a2, b2|[a1, b1][a2, b2] = 1⟩. It

follows that ⟨a1, a2⟩ < π1(Σ) is free. Define the representation Γ : π1(Σ) →
Diff∞

+(S
1) by

Γ(a1) = f , Γ(a2) = g

Γ(b1) = Γ(b2) = Id.

Then the suspension of Γ provides an example of an expansive codimension-
one foliation with finite but non-zero compact leaves: indeed, the leaf cor-
responding to the common fix point p of f , g is compact. This is easily
noted since the leaf that contains p is a minimal set of the foliation, and
thus compact.

Similarly, S. Hurder constructs an example of an expansive action Γ =
⟨ f , g⟩ < Diff∞

+(S1) having a unique minimal set, which is a Cantor set.
Suspending this as above we get a codimension-one expansive foliation
with exceptional minimal set (and no compact leaves).
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