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Abstract

In this paper we prove that for topologically mixing Anosov flows their equillibrium states corre-
sponding to Hölder potentials satisfy a strong rigidity property: they are determined only by their
disintegrations on (strong) stable or unstable leaves.

As a consequence we deduce: the corresponding horocyclic foliations of such systems are uniquely
quasi-ergodic, provided that the corresponding Jacobian is Hölder, without any restriction on the
dimension of the invariant distributions. This generalizes a classical result due to Babillott and
Ledrappier for the geodesic flow of hyperbolic manifolds.

We rely on symbolic dynamics and on recent methods developed by the authors.

Let f = (ft)t :M →M be an Anosov flow with invariant bundle decomposition TM = Es ⊕Ec ⊕Eu.
As it is well known, both Es, Eu are integrable to leafwise smooth foliations Ws,Wu which in this work
we refer as the s−, u− horocyclic foliations. We assume that f is topologically mixing: this is equivalent
to the fact that every leaf of its u-horocyclic (or s-horocyclic) foliation is dense in M (minimality of the
corresponding foliation).

To keep the presentation short it is expected that the reader is acquainted with the basic theory
of thermodynamic formalism, particularly for hyperbolic systems as covered in [3], and the theory of
measurable partitions in the sense of Rokhlin [11]. We remind the reader that given an invariant measure
for f one can always find (increasing) measurable partitions whose atoms are subsets of the leaves of Wu

and contain relatively open neighborhoods of each point, for almost every point. See for example the
discussion in [6]. We say that such partitions are adapted to Wu.

In this work we prove the following theorem related to the thermodynamic formalism of hyperbolic
systems.

Main Theorem. Assume f = (ft)t : M → M to be a C2 Anosov flow that is topologically mixing, and let
φ :M → R be a Hölder function. Then there exists a family {νux}x∈M satisfying:

1. νux is a Radon measure on the W u(x).

2. If m is any probability, invariant or not, and ξ is a measurable partition adapted to Wu whose
conditionals are of the form

mξ
x =

νux
νux (ξ(x))

,

then m is the unique equilibrium state for the system (f, φ).
*pdcarrasco@gmail.com
†hertz@math.psu.edu
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This result a strong formulation of the classical Sinai-Ruelle-Bowen theorem, since it does not require
invariance of the measure. In [5] it was obtained under the assumption dimEu = 1; here we remove this
hypothesis. However, the methods in the aforementioned article are geometrical, while in the present
article we rely on the theory of symbolic dynamics. This powerful tool is not available (at least at its peak)
for more general systems, such as partially hyperbolic maps, which was the main reason for the authors to
avoid using it before. Still, due to the importance of thermodynamic formalism for classical hyperbolic
systems, it is valuable to have the previous theorem without restrictions in the dimension of the unstable
bundle.

In the same article it was also noted an interesting consequence of the above theorem for the dynamics
of the foliation Wu, which generalizes the unique ergodicity of horocyclic flows corresponding to algebraic
geodesic flows discovered by Furstenberg [7], or more generally, the unique ergodicity of the strong
unstable foliation for hyperbolic systems due to Bowen and Marcus [4]. Let us explain this.

All foliations considered have continuous tangent bundle, and therefore the notion of an embedded
disc D ⊂M to be transverse to a foliation is just transversality (in the differential geometrical sense) of D
to every leaf that it intersects. If F is a foliation we say that a family {µx : x ∈M} is a transverse measure
if it satisfies:

1. each x ∈M is the center of some transverse disc Dx, and

2. µx is a non-trivial Borel measure on Dx.

Given one of such measures and y ∈ F(x), one can use the holonomy of the foliation to compare µx
and µy, and least for nearby x, y: we denote holFy,x : Ex ⊂ Dx → Ey ⊂ Dy, the holonomy transport, where
Ex, Ey are relatively open.

Definition. The transverse measure {µx}x of F is quasi-invariant if there exist a family of positive functions
Jacµ = {Jacy,x : Ex → R>0 : y ∈ F(x)} and positive constants {C(y, x) : y ∈ F(x)} such that for y ∈ F(x),

holFx,yµy = C(y, x)Jacx,yµx.

The family Jacν is the Jacobian of the quasi-invariant measure. If Jacν ≡ 1 then the measure is said to be an
invariant transverse measure.

In the setting that we are working it is convenient to use center stable discs as the family of transversals
to Wu, and we use implicitly this choice in what follows. As was noted in our previous article, the natural
family of Jacobians for Wu can be constructed as we explain now. Let

Coc(f) = {h :M → R+ : h(x) = e
∫ 1
0 φ(ftx)dt for some Hölder function φ}, (1)

and given h ∈ Coc(f), define

h= {Hx0,y0 : x0, y0 ∈M,y0 ∈W u(x0)} (2)

with

Hx0,y0(x) =

∞∏
j=1

h(f−j ◦ holW
u

y0,x0x)

h(f−j(x))
, x ∈W cs(x0),hol

Wu

y0,x0x ∈W cs(y0). (3)

Main Corollary. In the hypotheses of the Main Theorem, given h ∈ Coc(f) there exists µcs = {µcsx } a
transverse measure for Wu such that µcs is the unique quasi-invariant measure with Jacobian given by the
family h determined by h.

The proof that the Main Theorem implies the Main Corollary is exactly the same as the one given
in [5], and thus we will not repeat it here. We remark that this unique-quasi ergodicity was known for
unstable foliations corresponding to Abelian covers of the geodesic flow hyperbolic closed manifolds cf. [1,
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13], where it is used strongly the symmetries coming the geometry of such systems. The result for general
Anosov flows remained open until now. We also point out that a complete discussion of the significance of
this theorem, as well as a comparison with other literature can be found in the recent series of articles of
the authors cited above, hence we refer the reader to these for more background.

We finish this introduction by posing a general question. It follows by the results of this article that
horocyclic foliations have strong rigidity properties in terms of their admitted quasi-invariant measures.
On the other hand, the existence of the renormalizing dynamics (i.e., the associated hyperbolic system) is
probably not necessary for this phenomena, as the classical result of M. Ratner [10] suggest. We can thus
ask:

Question. Let Γ be a co-compact lattice in a lie group G, and let U be a one-parameter unipotent subgroup of
G acting minimally on Γ/G. Consider α a differentiable multiplicative cocycle over U ↷ Γ/G. Does there
exists a unique quasi-invariant measure for the action with Jacobian given by α?.

Ratner answers positively the previous question when the cocycle is trivial.

1 Prerequisites

Given a matrix A ∈ Matd({0, 1}) one considers the two-sided subshift of finite type that it determines,

ΣA = {x = (xn)n ∈ {0, 1}Z : Axnxn+1 = 1,∀n ∈ Z}.

For k, l ∈ N and a word a−k · a−k+1 · · · al ∈ {0, 1}l+k+1 with Aai,ai+1 = 1 for all i,we denote

C(a−k · · · al)−k = {x ∈ ΣA : xi = ai,∀ − k ≤ i ≤ l}.

Note that

C(a−k · · · al)−k =
l⋂

i=−k
σ−i(C(ai)0).

Definition 1.1. Sets of the previous form are called rectangles. If k = l we say that the rectangle is symmetric.

The topology in ΣA is metrizable, where a compatible metric is given as

d(x, y) =
1

2N+1
;

above N is the size of the largest symmetric rectangle that contains x, y.

Similar considerations can be applied to the one-sided shift spaces

Σ−
A = {x = (xn)n≤0 ∈ {0, 1}−N : Axnxn+1 = 1,∀n < 0}

Σ+
A = {x = (xn)n>0 ∈ {0, 1}N∗

: Axnxn+1 = 1,∀n > 0}

Note that any x ∈ ΣA can be written uniquely in the form

x = x− · x+ x− ∈ Σ−
A, x

+ ∈ Σ+
A

where the · denotes concatenation.

In both ΣA,Σ
+
A there is a continuous homeomorphism, respectively a d-to-1 endomorphism (called

simply the shift) given as
σ(x) = (xn+1)n,

whereas in Σ−
A we use the inverse σ−1.
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Definition 1.2. A is mixing1 if there exists M ∈ N such that every entry of AM is positive.

It is easy to verify that A is mixing if and only if σ : ΣA → ΣA is topologically mixing.

For x ∈ ΣA we denote its local stable/unstable sets by

W s
loc(x) = {y ∈ ΣA : xn = yn,∀n ≥ 0}

W u
loc(x) = {y ∈ ΣA : xn = yn, ∀n ≤ 0}.

A central remark in the theory is that one can consider Σ+
A as the space of local unstable sets of ΣA: for

y ∈W u
loc(x), y = x− · y+.

Given ϕ : ΣA → R and n ≥ 0 let

varn(ϕ) = sup{|ϕ(x)− ϕ(y)| : xk = yk,∀|k| ≤ n},

and denote
FA = {ϕ : varn(ϕ) ≤ Cθn, for some C, θ > 0}.

Similarly we can define the function spacees F∗
A, ∗ ∈ {−,+}. We recall the following classical lemma (see

for example lemma 1.6 in [3]).

Lemma 1.1. If ϕ ∈ FA then there exists functions ϕ∗, γ∗ : ΣA → R, ∗ ∈ {−,+} such that ϕ∗−ϕ = γ∗−γ∗◦σ,
and

• ϕ+ depends only on the coordinates > 0,

• ϕ− depends only on the coordinates ≤ 0.

• ϕ∗ ∈ F∗
A.

It follows that we can identify ϕ∗ as an element in F∗
A.

1.1 Suspension

If R : ΣA → R>0 is continuous, we consider the space

{(x, t) ∈ ΣA × R : 0 ≤ t ≤ R(x)}

and identify
(x,R(x)) ∼ (σx, 0)

to obtain a compact bundle over the circle, S(A,R) = ΣA → R>0/ ∼, together with the natural flow

st([x, u]) = [x, u+ t].

Definition 1.3. The space S(A,R) is the suspension of the shift map σ : ΣA → ΣA under the roof function R.
The flow st is the suspension flow.

Remark 1.1. The sets
D(i) = {[x, 0] : x0 = i}, 1 ≤ i ≤ d

are pairwise disjoint, and T =
⋃d
i=1D(i) are global transversal to the flow st, in the sense that every orbit of

st intersects T .
1Equivalently, it is irreducible and aperiodic.
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Write, using Lemma 1.1,
R∗ −R = v∗ − v∗ ◦ σ ∗ ∈ {+,−}

and construct the spaces

S∗(A,R) = {(x, t) ∈ ΣA × R : 0 ≤ t ≤ R∗(x)}/ ∼

by identifying (σ−1x,R−(x)) ∼ (x, 0) in S−(A,R), and (σ(x), 0) ∼ (x,R+(x)) in S+(A,R). Similarly as
in the case of S(A,R) one obtains semi-flows in S−(A,R), S+(A,R).

We can characterize easily the local unstable manifolds of a point in the suspension, when R ∈ FA.
Define the map Ψ : ∆ ⊂ S−(A,R)× Σ+

A → S(A,R) by

Ψ([x, t], y) = [z, t+ v−(z)],

where z = x · y ∈ ΣA (assuming that Ax0,y1 = 1). Then Ψ is an homeomorphism and sends Σ+
A to the local

unstable foliation in S(A,R).

We finish this part recalling the following important theorem.

Theorem 1.2 ([2, 9]). Given an Anosov flow f = (ft)t :M →M and ϵ > 0, there exists A ∈ Matd({0, 1}),
R ∈ FA strictly positive and a Hölder continuous function π : S(A,R) →M such that

• π is surjective, uniformly bounded to one, and 1− 1 on a residual set.

• π ◦ st = ft ◦ π,∀t.

• diamπ(D(i)) < ϵ,∀1 ≤ i ≤ d

If f is topologically mixing then A is mixing.

Given an Anosov flow f with symbolic model π : S(A,R) → M as in the previous theorem, the i-th
rectangle is

Ri = π(D(i)),

and it follows that T̃ =
⋃d
i=1 Ri is a global transversal to f; one can even make the construction so that the

relative interior of each Ri is smooth.

1.2 Ruelle-Perron-Frobenius operator

For a continuous map of a compact metric space f :M →M and a continuous function φ :M → R we
denote

1. Prf (M) the set of f -invariant probability measures,

2. Ptop(φ) = supν∈Prf (M){hν(f) +
∫
φdν} the topological pressure of the system (f, φ),

3. Eq(f, φ) = {µ ∈ Prf (M) : Ptop(φ) = hµ(f) +
∫
φdµ}, the set of equilibrium states of (f, φ).

Correspondingly, for a flow f = (ft)t on M we write

4. Prf(M) =
⋂
tPrft(M), the set of flow invariant measures,

5. Ptop(f, φ) = supν∈Prf(M){hν(f1) +
∫
φdν}, the topological pressure of the system (f, φ),

6. Eq(f, φ) the set of equilibrium states of the system (f, φ).
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Theorem 1.3 (Proposition 6.2 in [6]). If f = (ft)t is a topologically mixing Anosov flow and φ is Hölder,
then Eq(f, φ) = Eq(f1, φ

1) = {mφ}, where

φ1(x) =

∫ 1

0
φ(ftx) dt.

From now on f = (ft)t denotes an Anosov flow in the hypotheses of the Main Theorem with symbolic
model π : S(A,R) → M , and φ : M → R is a fixed Hölder function. It is not loss of generality (by
subtracting the pressure to φ) to assume

Ptop(f, φ) = 0.

We recall one possible construction of the equilibrium state associated to the system (f, φ). The map
ϕ = φ ◦ π is Hölder continuous, and one is led to consider equilibrium states for suspended flows. Due to
the structure of these, it is enough to consider equilibrium states for σ : ΣA → ΣA, replacing the potential
ϕ by its integrated version

ϕ̃(x) =

∫ R(x)

0
ϕ([x, u])du.

Using the (local) product structure of S(A,R), one defines also ψ : ∆′ ⊂ Σ−
A × S+(A,R) → R with

ψ(x, [y, t]) = ϕ(x · y, t− v+(x · y))

together with its integrated version

ψ̃(x · y) =
∫ R+(y)

0
ψ(x, [y, u])du.

It turns out that ψ̃ − ϕ̃ = k − k ◦ σ, with

k(x · y) =
∫ 0

−v+(xy)
ϕ([x · y, u])du.

If follows then that Eq(σ, ϕ̃) = Eq(σ, ψ̃).
We can now apply the technology of transfer operators: write ψ̃+ = ψ̃ +w−w ◦ σ, and for continuous

valued functions h ∈ C(Σ+
A) let

Lh(x) =
∑
σy=x

eψ̃
+(y)h(y).

Then L1 = 1, and the equilibrium state µ for the system (Σ+
A, ψ̃

+) is the unique eigen-measure of the
adjoint of L. The corresponding equilibrium state for the system (σ, ϕ̃) is then the (unique) shift invariant
extension of µ to ΣA, which we also denote as µ.

The approach of N. Haydn (see [8]) is then defining the measure µuΨ([x,0],y) on W u
loc(Ψ([x, 0], y)) as

Ψ∗e
−(w+v)µ

and for a general point Ψ([x, t], y) with 0 ≤ t ≤ R+(x) we define µuΨ([x,t],y), so that

(s−t)∗µ
u
Ψ([x,t],y) = e−

∫ t
0 ϕ([·,u]) duµuΨ([x,0],y)

Remark 1.2. The function w + v is the transfer function between the cohomologous potentials ϕ̃, ψ̃+.
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Theorem 1.4. The family of measures µu = {µup : p ∈ S(A,R)} satisfies:

1. each µup is non-atomic with full support in W u
loc(p).

2. It holds
(s−t)∗µ

u
st(p)

= e−
∫ t
0 ϕ([·,u])duµup .

3. The family µu depends continuously on p

We need to modify the previous family; denote

1. hϕ(z) = eϕ̃(z),

2. ∆x,y :W
u
loc(Ψ([x, 0], y)) → R>0,

∆x,y(Ψ([x, 0], y′)) :=

∞∏
k=1

hϕ(σ
−kx · y′)

hϕ(σ−kx · y)
.

3. νuΨ([x,0],y) = ∆x,yµ
u
Ψ([x,0],y)

and extend for points p = Ψ([x, t], y), 0 ≤ t < R+(x) by requiring

(s−t)∗ν
u
st(p)

= e−
∫ t
0 ϕ([x·y,u])duνup

By the form of these measures, there is a one to one correspondence with a family {νuz : z ∈ ΣA} satisfying
the following properties.

Proposition 1.5. It holds:

1. each νuz is a measure on W u
loc(z).

2. σνuz = eϕ̃(z)νuσz.

3. If ξ = {W u
loc(z) : z ∈ ΣA} and Eq(σ, ϕ) = {m}, then the conditional measures of m on ξ are given as

mξ
z =

νuz
νuz (W

u
loc(z))

,

Proof. The first and the second part follow directly by construction. The third is consequence of the
previous ones, and is proven (in more generality) in Section 4 of [6]. ■

Using π we can use the measures νup to induce a family {νux : x ∈M} where each νux is a measure on a
local unstable disc containing x ∈M . This follows from the properties of the symbolic model, and is given
for example in the Appendix of [12].

The measures defined in the Main Theorem are precisely the νux . Note that these give the disintegration
of the unique equilibrium state for the system (f, φ), and therefore they are uniquely defined modulo
normalization.

Remark 1.3. Suppose that m ∈ Pr(M) for which there exists an adapted partition ξ to Wu so that its
conditionals are of the form

mξ
x =

νux
νux (ξ(x))

.

Then the projetive class of νux can be recovered from the conditional measures, and in particular if ξ′ is another
adapted partition to Wu, then the conditional measures of m with respect to ξ′ are given by {νux}.
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From the previous discussion it follows that to establish the Main Theorem it suffices to prove:

Theorem 1.6. Let m ∈ Pr(ΣA) so that its disintegration along the partition ξ is given by the family νuz ,

mξ
z =

νuz (·)
νuz (W

u
loc(z))

.

Then m is the unique equilibrium state for the system (σ, ϕ).

We finish this part by noting that since σW u
loc(x) =

⊔d
i=1W

u
loc(x

i) for some points zi, we can extend
the νuz to measures on the whole unstable set W u(z). We will tacitly assume that in what follows.

2 Marcus’ operators

Given a continous function h : ΣA → R and n ≥ 0 we define a new continous function

Rnh(x) =
1

νux (W
u
loc(x))

∫
Wu

loc
(x)

h ◦ σn dνux . (4)

This way we get a family of linear contractions {Rn : C(ΣA) → C(ΣA) : n ≥ 0}.

Proposition 2.1. The family {Rnh}n is equicontinuous.

Proof. Let x, y, z ∈ C(a)0 with

• y ∈W u
loc(x),

• z ∈W u
loc(y)

We have νux = C(x, y)νuy , and thus Rnh(x) = Rnh(y). On the other hand, the difference between the
functions h · 1Wu

loc
(y), h · 1Wu

loc
(z) converges uniformly to zero as y 7→ z, and it follows that same is true for

the quantity ∣∣∣∣∣ 1

νuy (W
u
loc(y))

∫
Wu

loc
(y)

hdνuy − 1

νuz (W
u
loc(z))

∫
Wu

loc
(z)

hdνuz

∣∣∣∣∣
For points y, z in the same stable set one can apply this fact to h ◦ σn · 1Wu

loc
(y), h ◦ σn1Wu

loc
(z), ∀n ≥ 0.

Putting everything together and using the local product structure inside C(a)0 we deduce the claim. ■

We will now show that {Rnh}n converges uniformly to some constant c(h). Let Ω be the set of all
sequences {Θm

n,x : n,m ≥ 0, x ∈ ΣA} satisfying

1. Θm
n,x is a probability measure on σm(W u

loc(x)),

2. for every x ∈ ΣA

Rn+mh(x) =

∫
Rnh(y) dΘ

m
n,x(y). (5)

Definition 2.1. {Θm
n,x} ∈ Ω is adapted to a cylinder U if

inf
n,m,x

Θm
n,x(U) > 0.
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The bulk of the work is contained in proving that for any cylinder U there is {Θm
n,x} ∈ Ω adapted to

it. If this were the case, note that {cn(h) = infxRnh(x)}n≥0 is an increasing bounded sequence of real
numbers, and therefore

∃c(h) = lim
n
cn(h) = sup

n
cn(h).

Note also that if g is any accumulation point of {Rnh}n, then g ≥ c(h).
Recall that Am has positive entries, for every m ≥M .

Lemma 2.2. Given a cylinder U there exist CU > 0 such that for every x ∈ ΣA, ∀m > M it holds

σm(W u
loc(x)) =

km⋃
i=1

W u
loc(y

i)

with
#{i : yi ∈ U}

km
≥ CU .

Proof. It is no loss of generality to consider the case U = C(a0 · · · al)0, since σkC(a0 · · · al)−k = C(a0 · · · al)0.
Fix x: we have

σm(W u
loc(x)) = {y : yn−m = xn, ∀n ≤ 0} =

km⋃
i=1

W u
loc(z

i) =

km⋃
i=1

W u
loc(z

i)

where in particular for i ̸= i′ there exists −m < j ≤ 0 so that zij ̸= zi
′
j . We denote W = {zi : 1 ≤ i ≤ km}

and observe that we can write

W =
d⋃
e=1

We We = {zi ∈ W : zi−M = e},

where each We ̸= ∅. Therefore for m ≥M and each 1 ≤ e ≤ d the proportion

#{zi ∈ We : z
i
0 = a0}

#We

is positive and independent of m. This implies the claim, since one can choose a fixed proportion of points
yi ∈W u

loc(z
i) from those with zi0 = a0, also satisfying yi ∈ U (because U does not depend on m). ■

We compute, for n,m ≥ 0

Rn+mh(x) =
1

νux (W
u
loc(x))

∫
Wu

loc
(x)

h ◦ σn+m dνux =
1

νuσmx(σ
m(W u

loc(x)))

∫
σm(Wu

loc
(x)))

h ◦ σn dνuσmx

=
1

νuσmx(σ
m(W u

loc(x)))

km∑
i=1

∫
Wu

loc
(yi)

h ◦ σn dνuσmx

=
1

νuσmx(σ
m(W u

loc(x)))

km∑
i=1

νuσmx(W
u
loc(y

i))

νu
yi
(W u

loc(y
i))

∫
Wu

loc
(yi)

h ◦ σn dνuyi

=

km∑
i=1

νuσmx(W
u
loc(y

i))

νuσmx(σ
m(W u

loc(x)))
Rnh(y

i).

It follows that {Θm
n,x} ∈ Ω, where

Θm
n,x =

km∑
i=1

νuσmx(W
u
loc(y

i))

νuσmx(σ
m(W u

loc(x)))
δyi .
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Lemma 2.3. {Θm
n,x} is adapted to U

Proof. Indeed, by definition of the measure νuσmx,

Θm
n,x(U) =

∑km
i=1
yi∈U

νuσmx(W
u
loc(y

i))∑km
i=1 ν

u
σmx(W

u
loc(y

i))
=

∑km
i=1
yi∈U

νu
yi
(W u

loc(y
i))∑km

i=1 ν
u
yi
(W u

loc(y
i))

.

On the other hand, for every z, w ∈ ΣA the measures νuz (W
u
loc(z)), ν

u
w(W

u
loc(w)) are uniformly comparable,

therefore the result follows from Lemma 2.2. ■

Consider any point of accumulation g ∈ C(ΣA) of {Rnh}, with

lim
k
Rnk

h = g.

As noted g ≥ c(h), and one can compute

Rnk+mh(x)− c(h) =

∫
(Rnk

h− c(h)) dΘm
nk,x

.

We choose xnk+m with Rnk+mh(x
nk+m) = c(h) and consider the measures

Θm
(nk)

= Θm
n,xnk+m .

It follows that
0 =

∫
(Rnk

h− c(h)) dΘm
(nk)

hence if Θ is any accumulation point of {Θm
(nk)

}, then∫
(g− c(h)) dΘ = 0.

Observe that Θ(U) > 0, and since g − c(h) ≥ 0, we deduce that there exists some xU ∈ U such that
g(xU ) = c(h). But U is arbitrary, hence g ≡ c(h). We have shown:

Theorem 2.4. For every h ∈ C(ΣA) the family {Rnh}n converges uniformly to a constant c(h).

3 Equicontinuity of the conditional expectations

Recall that we are denoting by ξ the partition of S(A,R) into local unstable manifolds,

ξ(Ψ([x, t], y)) = {Ψ([x, t], y′)) : y′ ∈ Σ+
A}

and for n ≥ 0 we denote by ξn the partition with atoms

ξn(Ψ([x, t], y)) = {Ψ([(xk)k≤nak+1 · · · a0, t], y′) : y′ ∈ Σ+
A, Ax−kak+1

= 1, Aaj ,aj+1 = 1, k + 1 ≤ j < −1}.

It holds
ξn(Ψ([x, t], y)) =

⊔
j

ξ(Ψ([xj , t], y)) (6)

for some points xj ∈ Σ−
A.
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We fix m a probability measure in S(A,R) whose conditionals on the unstable sets are given by the
family {νup }. Given h ∈ C(ΣA) the conditional expectation of h with respect to ξn can be computed in the
point p = Ψ([x, t], y) as

Enh(p) =
1

νup (ξ
n(p))

∫
ξn(p)

hdνup =
1

νu
σ−nz

(W u
loc(σ

−nz))

∫
Wu

loc
(σ−nz)

h([σnw, t]) dνuσ−nz(w).

where z = x · y
It now follows by Theorem 2.4 that {Enh}n converges uniformly to some constant c(h), and therefore∫

hdm =

∫
Enhdm −−−→

n→∞

∫
c(h) dm = c(h),

which in turn implies c(h) =
∫
hdm. This shows that there is at most one measure having conditionals

given by {νux}, and since the equilibrium state for the potential ϕ satisfies this condition, it is this referred
measure. This concludes the proof of the Main Theorem.
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