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Abstract

These are notes on a lecture given by F. Rodriguez-Hertz in Trieste (2012), explaining an alternative
proof of the well known Franks’ result: any Anosov diffeomorphism in a surface is conjugate to a linear
hyperbolic map acting in the torus.

In this notes we’ll prove the following.

Theorem (Franks, 1971). Let f : M → M be an Anosov diffeomorphism, where M is closed surface. Then
M is the Torus T2 and f is conjugate to a hyperbolic linear map A : T2 → T2.

The proof that we’ll present is due to A. Katok and F. Rodrigues-Hertz [2], where a more general
version for hyperbolic actions is given. It is a variation of a proof given by Hiraide [1]. As usual, any
mistake comes from my own lack of understanding.

Convention f : M → M denotes an Anosov diffeomorphism on a compact surface.

For the moment we won’t rely on the fact that M = T2, which can be deduced from basic topology. To
establish the Theorem we’ll use the following properties of f .

M-1 There exist one dimensional f -invariant foliations Ws = {W s(x)}x∈M ,Wu = {W u(x)}x∈M . Their
leaves are homeomorphic to R.

M-2 There exist families of σ-finite measures {νsx}x∈M , {νux}x∈M satisfying the following properties.

(a) νsx, ν
u
x are non-atomic and locally finite . The measure νsx is fully suppported on W s(x), while

the measure νux is fully supported on W u(x).

(b) The maps x 7→ νsx, x 7→ νux are continuous (see below).

(c) y ∈ W s(x) then there exists cs(x, y) > 0 such that νsx = cs(x, y)νsy . Likewise if y ∈ W u(x) then
there exists cu(x, y) > 0 such that νux = cu(x, y)νuy .

(d) For every x ∈ M there exists λs(x) > 0 such that f∗νsx = λs(x)νsfx.

M-3 For every y ∈ W u(x) there exists holuy,x : W s(x) → W s(y) the holonomy (transport) map such that

(a) Dom(holuy,x) = W s(x).

(b) (holuy,x)∗ν
s
x = νyx.

Given x ∈ M we seek to define a “good” parametrization of W s(x), that is, a homeomorphism
Hs

x : R → W s(x) that’ll satisfy the following properties.
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H-1 Hs
x(0) = x.

H-2 y ∈ W s(x) ⇒ (Hs
y)

−1 ◦Hs
x : R → R is an affine map; there exists c̃(y, x) ̸= 0, r̃(y, x) ∈ R such that

(Hs
y)

−1 ◦Hs
x(t) = c̃(y, x) · t+ r̃(y, x).

H-3 (Hs
fx)

−1 ◦ f ◦Hs
x(t) = λ̃s(x) · t, for some λ̃s(x) ̸= 0.

H-4 y ∈ W u(x) implies
(Hs

y)
−1 ◦ holuy,x ◦Hs

x(t) = ã(y, x) · t

for some ã(y, x) ̸= 0.

To this end, we pick a measurable orientation for Ws and for x ∈ M, t ∈ R we let Hs
x(t) be the unique

point in W s(x) such that
νx([x,H

s
x(t)]) = |t|

That is, (Hs
x)

−1(y) = ±νx([x, y]) (depending on the orientation).

Exercise. Check using properties M-1, M-2, M-3 that Hs
x is a well defined homeomorphism satisfying H-1,

H-2, H-3 and H-4.

Now we fix x ∈ M and define ĥx : W s(x)×W u(x) → M by

ĥx(y, z) = holsz,x(y).

Observe that

• ĥx(x, x) = x.

• ĥx(y, x) = y

• ĥx(y, z) ⊂ W u(y) ∩W s(z).

Using ĥx we define hx : R× R → M as the composition

(ts, tu) 7→ (Hs
x(t

s), Hu
x (t

u)) 7→ ĥx(H
s
x(t

s), Hs
x(t

u)) = holsHu
x (t

u),x(H
s
x(t

s))

= Hs
Hu

x (t
u)(ã(H

u
x (t

u))ts, x)

Let A := {affine maps of R2, Lz = Az + b : A diagonal}. It is direct to check (and well known) that A
is a Lie group.

Lemma 0.1. If ws, wu ∈ R are such that hx(ws, wu) = y then there exists L ∈ A satisfying

1. L(0, 0) = (ws, wu).

2. hx ◦ L = hy.

The proof is not hard. Now we consider Γ ⊂ A the subgroup given by

Γ := {L ∈ A : hx ◦ L = hx}

Lemma 0.2. Γ acts discontinously on R2.

Proof. Otherwise there would exist a sequence {Ln} ⊂ Γ of distinct elements such that Ln(0, 0) −−−→
n7→∞

(0, 0). This is absurd by transversality of Es
x, E

u
x . ■

We recall the following two facts of subgroups of the Möbius transformations group PSl2(C):
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• If G < PSl2(C) acts discontinuously on a subset of Ĉ = C ∪ {∞}, then G is discrete.

• A subgroup of PSl2(C) containing a map az + b, a ̸= 1 cannot act discontinuously on C.

Corollary 0.3. Γ is a discrete group of translations.

It follows by lemma 0.1 that hx defines a bijective bi-measurable map

h : R2/Γ → M

Let us assume for now that x is a fix point of f (in particular Fix(f) ̸= ∅) and write h = hx. Consider A
the map A = h−1 ◦ f ◦ h and note that A is linear and sends Γ in Γ. We consider the manifold X := R2/Γ
and observe that we can induce µ a smooth measure (Haar in fact) on it. By construction, h∗µ is f -invariant
and moreover it has conditionals equivalent to νsy , ν

u
y almost everywhere. This implies that h∗µ is finite

over compact sets, and thus finite. Hence Γ ≈ Z× Z, and therefore X = T2.

We have advanced as much as we could without assuming any structure on Ws,Wu. To finish, we
need an extra argument: Ws,Wu are orientable, hence h is in fact an homeomorphism. There are several
ways to prove this, one can for example use that Es, Eu are C1 (we are in dimension two) and invoke the
following classical theorem.

Theorem 0.4. Let E be a smooth direction field on a surface without periodic orbits. Then E is orientable.

Remark 0.1. It is easy to prove that f has a periodic point, therefore the previous argument shows that some
power of it is conjugate to a linear hyperbolic map A. Since A is diagonalizable, it has roots of any order and
it follows that f is conjugate to a linear hyperbolic map as well.
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