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CHAPTER 1

Hyperbolic Geometry

Recall that for α ∈ D the map ϕα : D→ D defined by

ϕα(z) =
z − α
1− ᾱz

is bi-holomorphic (ϕ−1
α = ϕ−α), sends α to 0 and 0 to −α. Furthermore,

ϕ′α(z) =
1− |z|2

(1− ᾱz)2

and in particular

ϕ′α(0) = 1− |α|2

ϕ′α(α) =
1

1− |α|2
.

Suppose that f : D ý is holomorphic and fix α ∈ D. The holomorphic function h =
ϕfα ◦ f ◦ ϕ−α : D ý fixes 0, therefore by Schwartz’s lemma |h′(0)| = |ϕfα| · |f ′(α)| · |ϕ−α(0)| ≤ 1,
that is

|f ′(α)| ≤ 1− |f(α)|2

1− |α|2
.

There is equality if and only there exists λ ∈ S1 such that f = ϕ−fα ◦mλ ◦ϕα, where mλ(z) = λ · z;
in this case f ∈Mob, therefore bijective.

In particular

|f ′(0)| ≤ 1− |f(0)|2; if f is not bijective then |f ′(0)| < 1− |f(0)|2.

Theorem 1.0.1 (Schwartz-Pick Lemma). If f : D→ D is holomorphic and z ∈ D, then

|f ′(z)| ≤ 1− |f(z)|2

1− |z|2
.

Equality implies that f is Möbius.
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2 Hyperbolic Geometry

On H we consider the Riemannian metric

ds2
H =

| dz|
(Im(z))2

;

that is, for v, w ∈ R2 and z ∈ H we compute the inner product of the vectors v, w ∈ TzH as

〈v, w〉 =
v · w
Im z2

.

where v ·w is the Euclidean inner product between these two vectos. This metric is conformal, in
particular

angles measured with dsH are the same as measured with the Euclidean metric.

Similarly, on D consider the Riemannian metric given by

ds2
D =

4|dz|2

(1− |z|2)2

Definition 1.0.1. The metric defined by dsH, dsD is the Poincaré metric in the space H,D.

The induced distance, called the Poincaré distance in X = H,D is

d(a, b) = inf{l(γ) : γ : [0, 1]→ X, γ(0) = a, γ(1) = b}

where

l(γ) =

∫ 1

0

dsX(γ′(t)) dt.

exercise Show that (H, dsH), (D, dsD) are have constant sectional curvature Kg = −1.

Convention From now on, X = D,H are always equipped with their Poincaré metric, unless
explicitly stated, and every metric notion is referred to this metric. For example, if we say that
f : X ý is an isometry, we mean an isometry for the Poincaré metric, f∗ dsX = dsX .

Recall:. Let X be a Riemannian manifold (say, a surface equipped with a Riemannian metric). A
curve γ : I → X is a geodesic if its derivative has constant norm c, and

∀t0 ∈ I∃ε > 0 : t, s ∈ (t0 − ε, t0 + ε)⇒ l(γ|[t, s]) = c|t− s|.

That is, if γ locally minimizes the distance among its points. If f : X ý is an isometry and γ is a
geodesic then clearly f ◦ γ is a geodesic. We denote

Isom(X) = {f : X ý: f C1isometry}

and Isom+(X) ⊂ Isom(X) the subset of orientation preserving isometries.

Observe the following consequence of Schwartz-Pick.

Proposition 1.0.2. f : D ý holomorphic, then

∀a, b ∈ D, d(fa, fb) ≤ d(a, b).

There is = for some pair a 6= b if and only if f ∈Mob.
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3

Proof. Considering the line element dsD = 2|dz|
1−|z|2 , we deduce directly by Schwartz-Pick

f ∗
(

2|dz|
1− |z|2

)
=

2|f ′(z)| · |dz|
1− |fz|2

≤ 2|dz|
1− |z|2

which gives the inequality. Moreover, due to continuity we deduce that the the equality
d(fa, fb) = d(a, b) for some a 6= b implies that at some z we have 2 |f

′(z)|
1−|fz|2 = 2

1−|z|2 which in
turn implies that f is in Mob. The reciprocal follows from the discussion at the beginning of this
part. �

Corollary 1.0.3. Aut(D) = Isom+
P (D).

Proof. If f ∈ Aut(D), we’ve already seen that it is of the form f(z) = eiθϕα(z), for some
θ ∈ R, α ∈ D; one checks directly that z 7→ eiθ and ϕφ preserve the Poincaré metric, therefore
Aut(D) ⊂ Isom+

P (D).
Conversely, if f : D ý is an orientation preserving isometry, then f is conformal (since dsP

is conformal), C1 and preserves orientation. Therefore is holomorphic, and by the previous
proposition it is a Möbius transformation. �

Since z 7→ z̄ is an orientation reverse involution, we get:

Corollary 1.0.4. IsomP (D) = span {SU(1, 1), z 7→ z̄}.

Here is an important application.

Geodesics in D Let a ∈ D ∩ R>0, a = x + i0 and consider the curve γ(t) = tx and any other
curve γ̃ in D satisfying γ̃(0) = 0, γ̃(1) = a.

ao

Write γ̃(t) = u(t) + iv(t) and compute its length

l(γ̃) =

∫ 1

0

2
√
u̇2 + v̇2

1− (u2 + v2)
dt ≥

∫ 1

0

2|u̇|
1− u2

dt = 2

∫ x

0

du

1− u2
= log(

1 + x

1− x
) = l(γ).

We deduce that γ minimizes the distance between 0 and a, and by the same computation, given
two points in D ∩ R>0 the horizontal segment minimizes the distance between them. We deduce
that γ is a geodesic and d(0, a) = log(1+x

1−x).

pdcarrasco@mat.ufmg.br



4 Hyperbolic Geometry 1.1

Now if a, b ∈ D are any pair of points we can compute

d(a, b) = d(ϕa(a), ϕa(b)) = d(0, ϕa(b)) = d(0, |ϕa(b)|)

= log
1 +

∣∣ b−a
1−āb

∣∣
1−

∣∣ b−a
1−āb

∣∣ = log

(
|1− āb|+ |b− a|
|1− āb| − |b− a|

)
.

1.1 Geodesics in H
Consider the Cayley transform T : H→ D,

T (z) =
z − i
z + i

.

As T ′(z) = 2i
(z+i)2

, the get

T ∗ dsD|Tz =
2

|z + i|2
2|dz|

1−
∣∣ z−i
z+i

∣∣2 =
4|dz|

|z + i|2 − |z − i|2
=

|dz|
Re(−iz)

=
|dz|

Im(z)
= dsH.

That is, T : D→ H is an isometry.
Let us now compute the hyperbolic distance in H. We start considering the particular case

a = iy, b = i and observe that

dH(a, i) = dD(T (a), 0) = log
1 + r

1− r
, r = |T (a)|.

Since r = |x−1|
x+1

, we get

1 + r

1− r
=
x+ 1 + |x− 1|
x+ 1− |x− 1|

=

x x ≥ 1

1

x
x < 1

hence

dH(a, i) = | log x|.

Next suppose that b = iy′ and consider the isometry f(z) = z
y′

; we get

dH(a, b) = dH(f(a), i) = | log
y

y′
|.

We also note that since dH(·, ·) is invariant under translations,

a = x+ iy, b = x+ iy′ ⇒ dH(a, b) = | log
y

y′
|

The general case can be treated similarly.
We now use the (transitive) action PSl2(R) y Nhyp and conclude that

Nhyp ⊂ {traces of geodesics of H}

In fact, those sets are equal.

pdcarrasco@mat.ufmg.br



1.1 Geodesics in H 5

Theorem 1.1.1. Nhyp = {traces of geodesics of H}.
Proof. Denote by γp,v the geodesic determined by (p, v) ∈ TH; it is no loss of generality to restrict
ourselves to the case |v| = 1. Take one of such geodesics and consider the non-euclidean line L
passing through p and tangent to v. Observe that L is well defined: if v is vertical this is obvious,
otherwise consider the straight line which passes through p and is perpendicular to v, and let O
be the point of intersection of this line with the x-axis. The semicircle centered at O with radius
|O − p| is the aforementioned L.

r

l l r

Figure 1.1: Possible non-euclidean lines.

Consider the Möbius transformation M sending l(L) 7→ 0, p 7→ i, r(l) → ∞; necessarily M
sends L to the vertical axis, whereas M(R) is a line passing trough 0 that is perpendicular to ~oy.
It follows that M(R) = R and M = MA for some A ∈ PSl2(R).

We know that M is an isometry, and in particular M(γi,i) is the geodesic passing through p
with tangent vector M ′(p). But note that M(γi,i) is a parametrization of L (with unit speed),
hence M ′(p) is the tangent to L at z, i.e. M ′(p) = v. This shows that M(γi,i) = γz,p, and in
particular γz,p is a parametrization of L. �

Remark 1.1.1. The following picture contains an important historical fact.

o

a

Figure 1.2: Infinitely many parallel “lines” to ~oy through the point a.

pdcarrasco@mat.ufmg.br



6 Hyperbolic Geometry 1.1

The 5th postulate of Euclides does not hold in the geometry model (H, dsP ).

A similar argument shows the following.

Proposition 1.1.2. Given a 6= b ∈ H there exists a unique geodesic1 γ : R → H such that
γ(0) = a, γ(1) = b.

Proof. Without loss of generality a, b are not on the same vertical line (otherwise the result is
direct). Let C be the semi-circle containing a, b and denote by l < r its intersection with R.

a

b

o

Define f(z) = z−r
z−l , and observe that f ∈ Aut(H) satisfies f(r) = 0, f(l) = ∞, therefore

f(C) = ~oy. Since ~oy is the unique geodesic between f(a), f(b), the result follows. �

During the proof of the previous theorem we have also shown that the action PSl2(R) y
T1H = H× S1 given by

A · (z, v) = (MA(z),M ′
A(z)v)

is transitive. We readily compute the stabilizer of (i, i):

1. ai+b
ci+d

= i⇒ a = d, b = −c.

2. 1
(ci+d)2

i = i⇒ −c2 + d2 + 2cdi = 1⇒ a2 − b2 = 1, ab = 0.

Thus b = c = 0, a = d = 1, and the stabilizer is just the identity. By the orbit-stabilizer theorem
we conclude.

Proposition 1.1.3. There exists a smooth PSl2(R) -equivariant2 identification T1H ≈ PSl2(R). A
point (z, v) ∈ T1H is identified with the matrix A such that MA(i) = z,M ′

A(i) = v.

We have remarked that T sends ∂H = R to ∂D = S1; these are called the boundaries at∞.
Let a = x+ iy, b = x+ iε; by direct computation we get

lim
ε→∞

dH(a, bε) = lim
ε→0
| log

ε

y
| =∞.

That is, dH(a, ∂H) =∞, and likewise dH(a, ∂D) =∞.

1Here we don’t insists on γ′ having unit norm.
2Thus, the action PSl2(R) y T1H corresponds to left matrix multiplication.
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1.2 Geodesics in the disc model 7

1.2 Geodesics in the disc model

Since the Cayley transform is an isometry between H and D sending R to S1, and since Möbius
transformations sends lines/circles into lines/circles while preserving angles, we imediately
deduce the following.

Corollary 1.2.1. The traces of geodesics in D are the curves D ∩ T where T is a circle ⊥ ∂D.

It is instructive however to make a direct approach. Define I : D ý the geometrical inversion,
I(z) = 1

z̄
.

Clearly I preserves angles, and if C ⊂ Ĉ is a circle/line then I(C) is also a circle/line.

Claim. Given P,Q ∈ S1 there exists a unique circle C passing through P,Q that is orthogonal to S1.
Consider the picture below.

pdcarrasco@mat.ufmg.br



8 Hyperbolic Geometry 1.2

If {P,Q} = C ∩ S1 and C ⊥ S1 then necessarily the center (R) of C is in the intersection of the
tangents to S1 through P,Q, and the radius of C is |P − R|. This shows uniqueness, also gives a
recipe to construct C.

Proposition 1.2.2. Let C ⊂ C be a circle. Then C is orthogonal to S1 ⇔ I(C) = C.

Proof. Let {P,Q} = S1 ∩ C.

⇒ Then I(C) is a circle orthogonal to C through P,Q thus by uniqueness of such circle,
I(C) = C.

⇐ Assume that ∠P (C, S1) < π
2
. Since I inverts the sense of the angles, we see that C cannot

be fixed, as I(P ) = P .

�

Now take M,N ∈ D and denote M ′ = I(M), N ′ = I(N). Consider C the (unique) through
M,N,M ′ (or equivalently, through M,N,N ′).

pdcarrasco@mat.ufmg.br



1.3 Hyperbolic circles 9

Then C is clearly fixed under I, therefore C ⊥ S1. Denote C̃ = C ⊥ S1 and observe that
ϕP (C̃) is a circle/line perpendicular to S1 joining ϕP (P ) = 0 with ϕPQ; therefore ϕP (C̃) is a
diameter in D, and in particular is the unique (traze of) geodesic these two points. We conclude
that C̃ is the traze of the unique geodesic joining P with Q.

1.3 Hyperbolic circles

Consider the hyperbolic circle in D of center 0 and radius r > 0,

C = {z ∈ D : d(0, z) = r} = {z ∈ D : log
1 + |z|
1− |z|

= r}.

Note that

log
1 + |z|
1− |z|

= r ⇔ |z| = er − 1

er + 1
= tanh(

r

2
).

We deduce that C coincides with the euclidean circle of center 0 and radius tanh( r
2
).

Likewise

DP (0, r) = DEuc(0, tanh(
r

2
)).

Now consider an arbitrary hyperbolic circle C = CP (z0, r), and apply the map ϕz0; we get

ϕz0(C) = CP (0, r) = CEuc(0, tanh(
r

2
))

We deduce that C is an Euclidean circle of different radius and typically different center (if
z0 6= 0).

Corollary 1.3.1. (D, dP ) is complete.

As consequence of the Hopf-Rinow theorem, K ⊂ D is compact if and only if is closed and
bounded. Similarly for H.

pdcarrasco@mat.ufmg.br



10 Hyperbolic Geometry 1.3
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CHAPTER 2

The uniformization theorem

Here we’ll prove the followin important theorem.

Theorem 2.0.1. Let U ⊂ C be simply connected domain, U 6= C. Then there exists F : U → D
bi-holomorphic.

In other words any simply connected domain in C which is not the whole plane is conformally
equivalent to the disc. Note that C is not holomorphically equivalent to D (by Liouville’s theorem).

f

The proof is “surprinsingly simple1”.

Lemma 2.0.2. If U ( D is a simply connected domain then there exists an holomorphic embedding
F : U → D such that

a, b ∈ U, a 6= b⇒ dD(fa, fb) > dD(a, b).

Proof. Take α ∈ D \ U and note that since ϕα : D ý does not have any zeros in the simply
connected domain U , there exists g ∈ H(U) such that g2 = ϕα. We claim that g is injective:
indeed, if g(a) = g(b) then ϕα(a) = ϕα(b) and a = b.

Let h(z) = z2, h : D ý contracts the Poincaré metric, and since h ◦ g = ϕα is an isometry,
necessarily g expands the Poincaré metric. �

Proof of the Uniformization Theorem. Consider the family

F = {f : U → D : f ∈ H(U), f 1-1 (embedding)}.
1According to Thurston...
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12 The uniformization theorem

Note that for every f ∈ F , the set f(U) ⊂ D is a simply connected domain.

Claim: F 6= ∅.
Choose p 6∈ U and define h : U → C, h(z) = z − p; h is holomorphic in U and without zeros,

therefore there exists g ∈ H(U) with g2 = h. Arguing as in the lemma we see that

a 6= b⇒ g(a) 6= ±g(b).

The set V = g(U) is a domain, and w ∈ V implies that −w 6∈ V . Take q ∈ V, q 6= 0 and choose
0 < r < |q| such that D(q, r) ⊂ V .

Claim: D(−q, r) ∩ V = ∅.
Otherwise if w ∈ D(−q, r) ∩ V , then |w + q| < r ⇒ |q − (−w)| < r ⇒ −w ∈ V , which is not

true.

We can then define f : U → C by

f(z) =
r

g(z) + q

and note that f is holomorphic, injective and |f | < 1, hence f ∈ F .

Next we fix q ∈ U and let M = sup{|f ′(q)| : f ∈ F}; since F 6= ∅ we have M > 0, and by
Schwartz pick necessarily M <∞. Note also that F is normal, because it is a uniformly bounded
family of holomorphic functions (Montel’s theorem).

Choose (fn)n ⊂ F with limn |f ′n(q)| = M , and without loss of generality we can assume that
‖fn − f‖C0 −−−→

n→∞
0, for some f ∈ H(U). By Hurewicz’ theorem we know that f is either injective

or constant, but since |f ′(q)| = M > 0, necessarily f is injective.

As fn(U) ⊂ D∀n⇒ f(U) ⊂ cl(D); on the other hand f is open, and therefore f(U) ⊂ D. We
have shown that f ∈ F .

Claim: f(U) = D.

Otherwise, using the lemma we could find g : f(U)→ D injective that expands the Poincaré
metric. But then

‖g′(fq) · f ′(q)‖P = M · ‖g′(fq)‖P > M

which is absurd since g ◦ f ∈ F .

We have thus found f : U → D bi-holomorphic. �

Question. Consider U 6= C simply connected domain, and f : U → D bi-holomorphic. Can we
extend f to an homeomorphism F : cl(U)→ cl(D)?

Not in general; the boundary ∂U could be very complicated and not a circle.

pdcarrasco@mat.ufmg.br



13

However the following is known.

Theorem 2.0.3 (Carathéodory). Let f : U → D be a conformal map, U ⊂ C simply connected.
Then f extends to an homeomorphism F : cl(U)→ cl(D) if and only if ∂U is a Jordan curve.
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