Hyperbolic Geometry

Pablo D. Carrasco

June 11, 2021

ICEx-UFMG, Avda. Presidente Antonio Carlos 6627, Belo Horizonte-MG, BR31270-90

Contents

1 Hyperbolic Geometry 1
1.1 Geodesics in \mathbb{H} 4
1.2 Geodesics in the disc model 7
1.3 Hyperbolic circles 9
2 The uniformization theorem 11

CHAPTER 1

Hyperbolic Geometry

Recall that for $\alpha \in \mathbb{D}$ the map $\varphi_{\alpha}: \mathbb{D} \rightarrow \mathbb{D}$ defined by

$$
\varphi_{\alpha}(z)=\frac{z-\alpha}{1-\bar{\alpha} z}
$$

is bi-holomorphic ($\varphi_{\alpha}^{-1}=\varphi_{-\alpha}$), sends α to 0 and 0 to $-\alpha$. Furthermore,

$$
\varphi_{\alpha}^{\prime}(z)=\frac{1-|z|^{2}}{(1-\bar{\alpha} z)^{2}}
$$

and in particular

$$
\begin{aligned}
& \varphi_{\alpha}^{\prime}(0)=1-|\alpha|^{2} \\
& \varphi_{\alpha}^{\prime}(\alpha)=\frac{1}{1-|\alpha|^{2}}
\end{aligned}
$$

Suppose that $f: \mathbb{D} \bigcirc$ is holomorphic and fix $\alpha \in \mathbb{D}$. The holomorphic function $h=$ $\varphi_{f \alpha} \circ f \circ \varphi_{-\alpha}: \mathbb{D} \bigcirc$ fixes 0 , therefore by Schwartz's lemma $\left|h^{\prime}(0)\right|=\left|\varphi_{f \alpha}\right| \cdot\left|f^{\prime}(\alpha)\right| \cdot\left|\varphi_{-\alpha}(0)\right| \leq 1$, that is

$$
\left|f^{\prime}(\alpha)\right| \leq \frac{1-|f(\alpha)|^{2}}{1-|\alpha|^{2}}
$$

There is equality if and only there exists $\lambda \in \mathbb{S}^{1}$ such that $f=\varphi_{-f \alpha} \circ m_{\lambda} \circ \varphi_{\alpha}$, where $m_{\lambda}(z)=\lambda \cdot z$; in this case $f \in \operatorname{Mob}$, therefore bijective.

In particular

$$
\left|f^{\prime}(0)\right| \leq 1-|f(0)|^{2} ; \text { if } \mathrm{f} \text { is not bijective then }\left|f^{\prime}(0)\right|<1-|f(0)|^{2} \text {. }
$$

Theorem 1.0.1 (Schwartz-Pick Lemma). If $f: \mathbb{D} \rightarrow \mathbb{D}$ is holomorphic and $z \in \mathbb{D}$, then

$$
\left|f^{\prime}(z)\right| \leq \frac{1-|f(z)|^{2}}{1-|z|^{2}}
$$

Equality implies that f is Möbius.

On \mathbb{H} we consider the Riemannian metric

$$
\mathrm{d} s_{\mathbb{H}}^{2}=\frac{|\mathrm{d} z|}{(\operatorname{Im}(z))^{2}}
$$

that is, for $v, w \in \mathbb{R}^{2}$ and $z \in \mathbb{H}$ we compute the inner product of the vectors $v, w \in T_{z} \mathbb{H}$ as

$$
\langle v, w\rangle=\frac{v \cdot w}{\operatorname{Im} z^{2}} .
$$

where $v \cdot w$ is the Euclidean inner product between these two vectos. This metric is conformal, in particular
angles measured with $\mathrm{d} s_{\mathrm{H}}$ are the same as measured with the Euclidean metric.
Similarly, on \mathbb{D} consider the Riemannian metric given by

$$
\mathrm{d} s_{\mathbb{D}}^{2}=\frac{4|d z|^{2}}{\left(1-|z|^{2}\right)^{2}}
$$

Definition 1.0.1. The metric defined by $\mathrm{d} s_{\mathbb{H}}, \mathrm{d} s_{\mathbb{D}}$ is the Poincaré metric in the space \mathbb{H}, \mathbb{D}.
The induced distance, called the Poincaré distance in $X=\mathbb{H}, \mathbb{D}$ is

$$
\mathrm{d}(a, b)=\inf \{l(\gamma): \gamma:[0,1] \rightarrow X, \gamma(0)=a, \gamma(1)=b\}
$$

where

$$
l(\gamma)=\int_{0}^{1} \mathrm{~d} s_{X}\left(\gamma^{\prime}(t)\right) \mathrm{d} t
$$

exercise Show that $\left(\mathbb{H}, \mathrm{d} s_{\mathbb{H}}\right),\left(\mathbb{D}, \mathrm{d} s_{\mathbb{D}}\right)$ are have constant sectional curvature $K_{g}=-1$.
Convention From now on, $X=\mathbb{D}, \mathbb{H}$ are always equipped with their Poincaré metric, unless explicitly stated, and every metric notion is referred to this metric. For example, if we say that $f: X \multimap$ is an isometry, we mean an isometry for the Poincaré metric, $f_{*} \mathrm{~d} s_{X}=\mathrm{d} s_{X}$.

Recall:. Let X be a Riemannian manifold (say, a surface equipped with a Riemannian metric). A curve $\gamma: I \rightarrow X$ is a geodesic if its derivative has constant norm c, and

$$
\forall t_{0} \in I \exists \epsilon>0: t, s \in\left(t_{0}-\epsilon, t_{0}+\epsilon\right) \Rightarrow l(\gamma \mid[t, s])=c|t-s| .
$$

That is, if γ locally minimizes the distance among its points. If $f: X \bigcirc$ is an isometry and γ is a geodesic then clearly $f \circ \gamma$ is a geodesic. We denote

$$
\operatorname{Isom}(X)=\left\{f: X \bigcirc: f \mathcal{C}^{1} \text { isometry }\right\}
$$

and $\operatorname{Isom}^{+}(X) \subset \operatorname{Isom}(X)$ the subset of orientation preserving isometries.
Observe the following consequence of Schwartz-Pick.
Proposition 1.0.2. $f: \mathbb{D} \bigcirc$ holomorphic, then

$$
\forall a, b \in \mathbb{D}, \mathrm{~d}(f a, f b) \leq \mathrm{d}(a, b)
$$

There is $=$ for some pair $a \neq b$ if and only if $f \in M-a$.

Proof. Considering the line element $\mathrm{d} s_{\mathbb{D}}=\frac{2|d z|}{1-|z|^{2}}$, we deduce directly by Schwartz-Pick

$$
f^{*}\left(\frac{2|d z|}{1-|z|^{2}}\right)=\frac{2\left|f^{\prime}(z)\right| \cdot|d z|}{1-|f z|^{2}} \leq \frac{2|d z|}{1-|z|^{2}}
$$

which gives the inequality. Moreover, due to continuity we deduce that the the equality $\mathrm{d}(f a, f b)=\mathrm{d}(a, b)$ for some $a \neq b$ implies that at some z we have $2 \frac{\left|f^{\prime}(z)\right|}{1-|f z|^{2}}=\frac{2}{1-|z|^{2}}$ which in turn implies that f is in Mob. The reciprocal follows from the discussion at the beginning of this part.

Corollary 1.0.3. $\operatorname{Aut}(\mathbb{D})=\operatorname{Isom}_{P}^{+}(\mathbb{D})$.

Proof. If $f \in \operatorname{Aut}(\mathbb{D})$, we've already seen that it is of the form $f(z)=e^{i \theta} \varphi_{\alpha}(z)$, for some $\theta \in \mathbb{R}, \alpha \in \mathbb{D}$; one checks directly that $z \mapsto e^{i \theta}$ and φ_{ϕ} preserve the Poincaré metric, therefore $\operatorname{Aut}(\mathbb{D}) \subset \operatorname{Isom}_{P}^{+}(\mathbb{D})$.

Conversely, if $f: \mathbb{D} \circlearrowleft$ is an orientation preserving isometry, then f is conformal (since $\mathrm{d} s_{P}$ is conformal), \mathcal{C}^{1} and preserves orientation. Therefore is holomorphic, and by the previous proposition it is a Möbius transformation.

Since $z \mapsto \bar{z}$ is an orientation reverse involution, we get:
Corollary 1.0.4. $\operatorname{Isom}_{P}(\mathbb{D})=\operatorname{span}\{\operatorname{SU}(1,1), z \mapsto \bar{z}\}$.
Here is an important application.
Geodesics in \mathbb{D} Let $a \in \mathbb{D} \cap \mathbb{R}_{>0}, a=x+i 0$ and consider the curve $\gamma(t)=t x$ and any other curve $\tilde{\gamma}$ in \mathbb{D} satisfying $\tilde{\gamma}(0)=0, \tilde{\gamma}(1)=a$.

Write $\tilde{\gamma}(t)=u(t)+i v(t)$ and compute its length

$$
l(\tilde{\gamma})=\int_{0}^{1} \frac{2 \sqrt{\dot{u}^{2}+\dot{v}^{2}}}{1-\left(u^{2}+v^{2}\right)} \mathrm{d} t \geq \int_{0}^{1} \frac{2|\dot{u}|}{1-u^{2}} \mathrm{~d} t=2 \int_{0}^{x} \frac{d u}{1-u^{2}}=\log \left(\frac{1+x}{1-x}\right)=l(\gamma)
$$

We deduce that γ minimizes the distance between 0 and a, and by the same computation, given two points in $\mathbb{D} \cap \mathbb{R}_{>0}$ the horizontal segment minimizes the distance between them. We deduce that γ is a geodesic and $\mathrm{d}(0, a)=\log \left(\frac{1+x}{1-x}\right)$.

Now if $a, b \in \mathbb{D}$ are any pair of points we can compute

$$
\begin{aligned}
\mathrm{d}(a, b)= & \mathrm{d}\left(\varphi_{a}(a), \varphi_{a}(b)\right)=\mathrm{d}\left(0, \varphi_{a}(b)\right)=\mathrm{d}\left(0,\left|\varphi_{a}(b)\right|\right) \\
& =\log \frac{1+\left|\frac{b-a}{1-\bar{a} b}\right|}{1-\left|\frac{b-a}{1-\bar{a} b}\right|}=\log \left(\frac{|1-\bar{a} b|+|b-a|}{|1-\bar{a} b|-|b-a|}\right) .
\end{aligned}
$$

1.1 Geodesics in \mathbb{H}

Consider the Cayley transform $T: \mathbb{H} \rightarrow \mathbb{D}$,

$$
T(z)=\frac{z-i}{z+i}
$$

As $T^{\prime}(z)=\frac{2 i}{(z+i)^{2}}$, the get

$$
\left.T^{*} \mathrm{~d} s_{\mathbb{D}}\right|_{T z}=\frac{2}{|z+i|^{2}} \frac{2|d z|}{1-\left|\frac{z-i}{z+i}\right|^{2}}=\frac{4|d z|}{|z+i|^{2}-|z-i|^{2}}=\frac{|d z|}{\operatorname{Re}(-i z)}=\frac{|d z|}{\operatorname{Im}(z)}=\mathrm{d} s_{\mathbb{H}} .
$$

That is, $T: \mathbb{D} \rightarrow \mathbb{H}$ is an isometry.
Let us now compute the hyperbolic distance in \mathbb{H}. We start considering the particular case $a=i y, b=i$ and observe that

$$
\mathrm{d}_{\mathbb{H}}(a, i)=\mathrm{d}_{\mathbb{D}}(T(a), 0)=\log \frac{1+r}{1-r}, \quad r=|T(a)| .
$$

Since $r=\frac{|x-1|}{x+1}$, we get

$$
\frac{1+r}{1-r}=\frac{x+1+|x-1|}{x+1-|x-1|}= \begin{cases}x & x \geq 1 \\ \frac{1}{x} & x<1\end{cases}
$$

hence

$$
\mathrm{d}_{\mathbb{H}}(a, i)=|\log x| .
$$

Next suppose that $b=i y^{\prime}$ and consider the isometry $f(z)=\frac{z}{y^{\prime}}$; we get

$$
\mathrm{d}_{\mathbb{H}}(a, b)=\mathrm{d}_{\mathbb{H}}(f(a), i)=\left|\log \frac{y}{y^{\prime}}\right| .
$$

We also note that since $d_{H}(\cdot, \cdot)$ is invariant under translations,

$$
a=x+i y, b=x+i y^{\prime} \Rightarrow \mathrm{d}_{\mathbb{H}}(a, b)=\left|\log \frac{y}{y^{\prime}}\right|
$$

The general case can be treated similarly.
We now use the (transitive) action $\mathrm{PSI}_{2}(\mathbb{R}) \curvearrowright \mathcal{N}_{\text {hyp }}$ and conclude that

$$
\mathcal{N}_{h y p} \subset\{\text { traces of geodesics of } \mathbb{H}\}
$$

In fact, those sets are equal.

Theorem 1.1.1. $\mathcal{N}_{\text {hyp }}=\{$ traces of geodesics of $\mathbb{H}\}$.
Proof. Denote by $\gamma_{p, v}$ the geodesic determined by $(p, v) \in T \mathbb{H}$; it is no loss of generality to restrict ourselves to the case $|v|=1$. Take one of such geodesics and consider the non-euclidean line L passing through p and tangent to v. Observe that L is well defined: if v is vertical this is obvious, otherwise consider the straight line which passes through p and is perpendicular to v, and let O be the point of intersection of this line with the x-axis. The semicircle centered at O with radius $|O-p|$ is the aforementioned L.

Figure 1.1: Possible non-euclidean lines.

Consider the Möbius transformation M sending $l(L) \mapsto 0, p \mapsto i, r(l) \rightarrow \infty$; necessarily M sends L to the vertical axis, whereas $M(\mathbb{R})$ is a line passing trough 0 that is perpendicular to $\overrightarrow{o y}$. It follows that $M(\mathbb{R})=\mathbb{R}$ and $M=M_{A}$ for some $A \in \operatorname{PSl}_{2}(\mathbb{R})$.

We know that M is an isometry, and in particular $M\left(\gamma_{i, i}\right)$ is the geodesic passing through p with tangent vector $M^{\prime}(p)$. But note that $M\left(\gamma_{i, i}\right)$ is a parametrization of L (with unit speed), hence $M^{\prime}(p)$ is the tangent to L at z, i.e. $M^{\prime}(p)=v$. This shows that $M\left(\gamma_{i, i}\right)=\gamma_{z, p}$, and in particular $\gamma_{z, p}$ is a parametrization of L.

Remark 1.1.1. The following picture contains an important historical fact.

Figure 1.2: Infinitely many parallel "lines" to $\overrightarrow{o y}$ through the point a.

The 5th postulate of Euclides does not hold in the geometry model $\left(\mathbb{H}, \mathrm{d} s_{P}\right)$.
A similar argument shows the following.
Proposition 1.1.2. Given $a \neq b \in \mathbb{H}$ there exists a unique geodesic ${ }^{1} \gamma: \mathbb{R} \rightarrow \mathbb{H}$ such that $\gamma(0)=a, \gamma(1)=b$.

Proof. Without loss of generality a, b are not on the same vertical line (otherwise the result is direct). Let C be the semi-circle containing a, b and denote by $l<r$ its intersection with \mathbb{R}.

Define $f(z)=\frac{z-r}{z-l}$, and observe that $f \in \operatorname{Aut}(\mathbb{H})$ satisfies $f(r)=0, f(l)=\infty$, therefore $f(C)=\overrightarrow{o y}$. Since $\overrightarrow{o y}$ is the unique geodesic between $f(a), f(b)$, the result follows.

During the proof of the previous theorem we have also shown that the action $\mathrm{PSl}_{2}(\mathbb{R}) \curvearrowright$ $T_{1} \mathbb{H}=\mathbb{H} \times \mathbb{S}^{1}$ given by

$$
A \cdot(z, v)=\left(M_{A}(z), M_{A}^{\prime}(z) v\right)
$$

is transitive. We readily compute the stabilizer of (i, i) :

1. $\frac{a i+b}{c i+d}=i \Rightarrow a=d, b=-c$.
2. $\frac{1}{(c i+d)^{2}} i=i \Rightarrow-c^{2}+d^{2}+2 c d i=1 \Rightarrow a^{2}-b^{2}=1, a b=0$.

Thus $b=c=0, a=d=1$, and the stabilizer is just the identity. By the orbit-stabilizer theorem we conclude.

Proposition 1.1.3. There exists a smooth $\mathrm{PSl}_{2}(\mathbb{R})$-equivariant ${ }^{2}$ identification $T_{1} \mathbb{H} \approx \mathrm{PSl}_{2}(\mathbb{R}) . A$ point $(z, v) \in T_{1} \mathbb{H}$ is identified with the matrix A such that $M_{A}(i)=z, M_{A}^{\prime}(i)=v$.

We have remarked that T sends $\partial \mathbb{H}=\mathbb{R}$ to $\partial \mathbb{D}=\mathbb{S}^{1}$; these are called the boundaries at ∞. Let $a=x+i y, b=x+i \epsilon$; by direct computation we get

$$
\lim _{\epsilon \rightarrow \infty} \mathrm{d}_{\mathbb{H}}\left(a, b_{\epsilon}\right)=\lim _{\epsilon \rightarrow 0}\left|\log \frac{\epsilon}{y}\right|=\infty .
$$

That is, $\mathrm{d}_{\mathbb{H}}(a, \partial \mathbb{H})=\infty$, and likewise $\mathrm{d}_{\mathbb{H}}(a, \partial \mathbb{D})=\infty$.

[^0]
1.2 Geodesics in the disc model

Since the Cayley transform is an isometry between \mathbb{H} and \mathbb{D} sending \mathbb{R} to \mathbb{S}^{1}, and since Möbius transformations sends lines/circles into lines/circles while preserving angles, we imediately deduce the following.

Corollary 1.2.1. The traces of geodesics in \mathbb{D} are the curves $\mathbb{D} \cap T$ where T is a circle $\perp \partial \mathbb{D}$.

It is instructive however to make a direct approach. Define $I: \mathbb{D} \bigcirc$ the geometrical inversion, $I(z)=\frac{1}{\bar{z}}$.

Clearly I preserves angles, and if $C \subset \widehat{\mathbb{C}}$ is a circle/line then $I(C)$ is also a circle/line.
Claim. Given $P, Q \in \mathbb{S}^{1}$ there exists a unique circle C passing through P, Q that is orthogonal to \mathbb{S}^{1}. Consider the picture below.

If $\{P, Q\}=C \cap \mathbb{S}^{1}$ and $C \perp \mathbb{S}^{1}$ then necessarily the center (R) of C is in the intersection of the tangents to \mathbb{S}^{1} through P, Q, and the radius of C is $|P-R|$. This shows uniqueness, also gives a recipe to construct C.

Proposition 1.2.2. Let $C \subset \mathbb{C}$ be a circle. Then C is orthogonal to $\mathbb{S}^{1} \Leftrightarrow I(C)=C$.

Proof. Let $\{P, Q\}=\mathbb{S}^{1} \cap C$.
\Rightarrow Then $I(C)$ is a circle orthogonal to C through P, Q thus by uniqueness of such circle, $I(C)=C$.
\Leftarrow Assume that $\angle_{P}\left(C, \mathbb{S}^{1}\right)<\frac{\pi}{2}$. Since I inverts the sense of the angles, we see that C cannot be fixed, as $I(P)=P$.

Now take $M, N \in \mathbb{D}$ and denote $M^{\prime}=I(M), N^{\prime}=I(N)$. Consider C the (unique) through M, N, M^{\prime} (or equivalently, through M, N, N^{\prime}).

Then C is clearly fixed under I, therefore $C \perp \mathbb{S}^{1}$. Denote $\tilde{C}=C \perp \mathbb{S}^{1}$ and observe that $\varphi_{P}(\tilde{C})$ is a circle/line perpendicular to \mathbb{S}^{1} joining $\varphi_{P}(P)=0$ with $\varphi_{P} Q$; therefore $\varphi_{P}(\tilde{C})$ is a diameter in \mathbb{D}, and in particular is the unique (traze of) geodesic these two points. We conclude that \tilde{C} is the traze of the unique geodesic joining P with Q.

1.3 Hyperbolic circles

Consider the hyperbolic circle in \mathbb{D} of center 0 and radius $r>0$,

$$
C=\{z \in \mathbb{D}: \mathrm{d}(0, z)=r\}=\left\{z \in \mathbb{D}: \log \frac{1+|z|}{1-|z|}=r\right\} .
$$

Note that

$$
\log \frac{1+|z|}{1-|z|}=r \Leftrightarrow|z|=\frac{e^{r}-1}{e^{r}+1}=\tanh \left(\frac{r}{2}\right) .
$$

We deduce that C coincides with the euclidean circle of center 0 and radius $\tanh \left(\frac{r}{2}\right)$.
Likewise

$$
D_{P}(0, r)=D_{\mathrm{Euc}}\left(0, \tanh \left(\frac{r}{2}\right)\right) .
$$

Now consider an arbitrary hyperbolic circle $C=C_{P}\left(z_{0}, r\right)$, and apply the map $\varphi_{z_{0}}$; we get

$$
\varphi_{z_{0}}(C)=C_{P}(0, r)=C_{\mathrm{Euc}}\left(0, \tanh \left(\frac{r}{2}\right)\right)
$$

We deduce that C is an Euclidean circle of different radius and typically different center (if $z_{0} \neq 0$).

Corollary 1.3.1. $\left(\mathbb{D}, \mathrm{d}_{P}\right)$ is complete.
As consequence of the Hopf-Rinow theorem, $K \subset \mathbb{D}$ is compact if and only if is closed and bounded. Similarly for \mathbb{H}.

CHAPTER 2

The uniformization theorem

Here we'll prove the followin important theorem.
Theorem 2.0.1. Let $U \subset \mathbb{C}$ be simply connected domain, $U \neq \mathbb{C}$. Then there exists $F: U \rightarrow \mathbb{D}$ bi-holomorphic.

In other words any simply connected domain in \mathbb{C} which is not the whole plane is conformally equivalent to the disc. Note that \mathbb{C} is not holomorphically equivalent to \mathbb{D} (by Liouville's theorem).

The proof is "surprinsingly simple".
Lemma 2.0.2. If $U \subsetneq \mathbb{D}$ is a simply connected domain then there exists an holomorphic embedding $F: U \rightarrow \mathbb{D}$ such that

$$
a, b \in U, a \neq b \Rightarrow \mathrm{~d}_{\mathbb{D}}(f a, f b)>\mathrm{d}_{\mathbb{D}}(a, b)
$$

Proof. Take $\alpha \in \mathbb{D} \backslash U$ and note that since $\varphi_{\alpha}: \mathbb{D} \bigcirc$ does not have any zeros in the simply connected domain U, there exists $g \in H(U)$ such that $g^{2}=\varphi_{\alpha}$. We claim that g is injective: indeed, if $g(a)=g(b)$ then $\varphi_{\alpha}(a)=\varphi_{\alpha}(b)$ and $a=b$.

Let $h(z)=z^{2}, h: \mathbb{D} \multimap$ contracts the Poincaré metric, and since $h \circ g=\varphi_{\alpha}$ is an isometry, necessarily g expands the Poincaré metric.

Proof of the Uniformization Theorem. Consider the family

$$
\mathcal{F}=\{f: U \rightarrow \mathbb{D}: f \in H(U), f \text { 1-1 (embedding) }\}
$$

[^1]Note that for every $f \in \mathcal{F}$, the set $f(U) \subset \mathbb{D}$ is a simply connected domain.
Claim: $\mathcal{F} \neq \emptyset$.
Choose $p \notin U$ and define $h: U \rightarrow \mathbb{C}, h(z)=z-p ; h$ is holomorphic in U and without zeros, therefore there exists $g \in H(U)$ with $g^{2}=h$. Arguing as in the lemma we see that

$$
a \neq b \Rightarrow g(a) \neq \pm g(b)
$$

The set $V=g(U)$ is a domain, and $w \in V$ implies that $-w \notin V$. Take $q \in V, q \neq 0$ and choose $0<r<|q|$ such that $\mathbb{D}(q, r) \subset V$.
Claim: $\mathbb{D}(-q, r) \cap V=\emptyset$.
Otherwise if $w \in \mathbb{D}(-q, r) \cap V$, then $|w+q|<r \Rightarrow|q-(-w)|<r \Rightarrow-w \in V$, which is not true.

We can then define $f: U \rightarrow \mathbb{C}$ by

$$
f(z)=\frac{r}{g(z)+q}
$$

and note that f is holomorphic, injective and $|f|<1$, hence $f \in \mathcal{F}$.
Next we fix $q \in U$ and let $M=\sup \left\{\left|f^{\prime}(q)\right|: f \in F\right\}$; since $\mathcal{F} \neq \emptyset$ we have $M>0$, and by Schwartz pick necessarily $M<\infty$. Note also that \mathcal{F} is normal, because it is a uniformly bounded family of holomorphic functions (Montel's theorem).

Choose $\left(f_{n}\right)_{n} \subset \mathcal{F}$ with $\lim _{n}\left|f_{n}^{\prime}(q)\right|=M$, and without loss of generality we can assume that $\left\|f_{n}-f\right\|_{C^{0}} \xrightarrow[n \rightarrow \infty]{ } 0$, for some $f \in H(U)$. By Hurewicz' theorem we know that f is either injective or constant, but since $\left|f^{\prime}(q)\right|=M>0$, necessarily f is injective.

As $f_{n}(U) \subset \mathbb{D} \forall n \Rightarrow f(U) \subset \operatorname{cl}(\mathbb{D})$; on the other hand f is open, and therefore $f(U) \subset \mathbb{D}$. We have shown that $f \in \mathcal{F}$.
Claim: $f(U)=\mathbb{D}$.
Otherwise, using the lemma we could find $g: f(U) \rightarrow \mathbb{D}$ injective that expands the Poincaré metric. But then

$$
\left\|g^{\prime}(f q) \cdot f^{\prime}(q)\right\|_{P}=M \cdot\left\|g^{\prime}(f q)\right\|_{P}>M
$$

which is absurd since $g \circ f \in \mathcal{F}$.
We have thus found $f: U \rightarrow \mathbb{D}$ bi-holomorphic.

Question. Consider $U \neq \mathbb{C}$ simply connected domain, and $f: U \rightarrow \mathbb{D}$ bi-holomorphic. Can we extend f to an homeomorphism $F: \operatorname{cl}(U) \rightarrow \operatorname{cl}(\mathbb{D})$?

Not in general; the boundary ∂U could be very complicated and not a circle.

However the following is known.
Theorem 2.0.3 (Carathéodory). Let $f: U \rightarrow \mathbb{D}$ be a conformal map, $U \subset \mathbb{C}$ simply connected. Then f extends to an homeomorphism $F: \operatorname{cl}(U) \rightarrow \mathrm{cl}(\mathbb{D})$ if and only if ∂U is a Jordan curve.

[^0]: ${ }^{1}$ Here we don't insists on γ^{\prime} having unit norm.
 ${ }^{2}$ Thus, the action $\mathrm{PSl}_{2}(\mathbb{R}) \curvearrowright T_{1} \mathbb{H}$ corresponds to left matrix multiplication.

[^1]: ${ }^{1}$ According to Thurston...

