Hyperbolic Geometry

Pablo D. Carrasco

June 11, 2021

Contents

1	Hyperbolic Geometry	1
	1.1 Geodesics in \mathbb{H}	4
	1.2 Geodesics in the disc model	7
	1.3 Hyperbolic circles	9
2	The uniformization theorem	11

iv CONTENTS

CHAPTER 1

Hyperbolic Geometry

Recall that for $\alpha \in \mathbb{D}$ the map $\varphi_{\alpha} : \mathbb{D} \to \mathbb{D}$ defined by

$$\varphi_{\alpha}(z) = \frac{z - \alpha}{1 - \bar{\alpha}z}$$

is bi-holomorphic ($\varphi_{\alpha}^{-1} = \varphi_{-\alpha}$), sends α to 0 and 0 to $-\alpha$. Furthermore,

$$\varphi'_{\alpha}(z) = \frac{1 - |z|^2}{(1 - \bar{\alpha}z)^2}$$

and in particular

$$\varphi_{\alpha}'(0) = 1 - |\alpha|^2$$
$$\varphi_{\alpha}'(\alpha) = \frac{1}{1 - |\alpha|^2}.$$

Suppose that $f: \mathbb{D} \subset \mathbb{D}$ is holomorphic and fix $\alpha \in \mathbb{D}$. The holomorphic function $h = \varphi_{f\alpha} \circ f \circ \varphi_{-\alpha} : \mathbb{D} \subset \mathbb{D}$ fixes 0, therefore by Schwartz's lemma $|h'(0)| = |\varphi_{f\alpha}| \cdot |f'(\alpha)| \cdot |\varphi_{-\alpha}(0)| \leq 1$, that is

$$|f'(\alpha)| \le \frac{1 - |f(\alpha)|^2}{1 - |\alpha|^2}.$$

There is equality if and only there exists $\lambda \in \mathbb{S}^1$ such that $f = \varphi_{-f\alpha} \circ m_\lambda \circ \varphi_\alpha$, where $m_\lambda(z) = \lambda \cdot z$; in this case $f \in \mathcal{M} \circ \mathcal{B}$, therefore bijective.

In particular

$$|f'(0)| \le 1 - |f(0)|^2$$
; if f is not bijective then $|f'(0)| < 1 - |f(0)|^2$.

Theorem 1.0.1 (Schwartz-Pick Lemma). *If* $f : \mathbb{D} \to \mathbb{D}$ *is holomorphic and* $z \in \mathbb{D}$ *, then*

$$|f'(z)| \le \frac{1 - |f(z)|^2}{1 - |z|^2}.$$

Equality implies that f is Möbius.

On \mathbb{H} we consider the Riemannian metric

$$\mathrm{d}s_{\mathbb{H}}^2 = \frac{|\,\mathrm{d}z|}{(\mathrm{Im}(z))^2};$$

that is, for $v, w \in \mathbb{R}^2$ and $z \in \mathbb{H}$ we compute the inner product of the vectors $v, w \in T_z \mathbb{H}$ as

$$\langle v, w \rangle = \frac{v \cdot w}{\operatorname{Im} z^2}.$$

where $v \cdot w$ is the Euclidean inner product between these two vectos. This metric is conformal, in particular

angles measured with $ds_{\mathbb{H}}$ are the same as measured with the Euclidean metric.

Similarly, on \mathbb{D} consider the Riemannian metric given by

$$ds_{\mathbb{D}}^{2} = \frac{4|dz|^{2}}{(1-|z|^{2})^{2}}$$

Definition 1.0.1. The metric defined by $ds_{\mathbb{H}}, ds_{\mathbb{D}}$ is the Poincaré metric in the space \mathbb{H}, \mathbb{D} .

The induced distance, called the Poincaré distance in $X = \mathbb{H}, \mathbb{D}$ is

$$d(a,b) = \inf\{l(\gamma) : \gamma : [0,1] \to X, \gamma(0) = a, \gamma(1) = b\}$$

where

$$l(\gamma) = \int_0^1 \mathrm{d}s_X(\gamma'(t)) \,\mathrm{d}t.$$

exercise Show that $(\mathbb{H}, \mathrm{d}s_{\mathbb{H}}), (\mathbb{D}, \mathrm{d}s_{\mathbb{D}})$ are have constant sectional curvature $K_g = -1$.

Convention From now on, $X = \mathbb{D}$, \mathbb{H} are always equipped with their Poincaré metric, unless explicitly stated, and every metric notion is referred to this metric. For example, if we say that $f: X \leq$ is an isometry, we mean an isometry for the Poincaré metric, $f_* \, \mathrm{d} s_X = \mathrm{d} s_X$.

Recall:. Let X be a Riemannian manifold (say, a surface equipped with a Riemannian metric). A curve $\gamma: I \to X$ is a geodesic if its derivative has constant norm c, and

$$\forall t_0 \in I \exists \epsilon > 0 : t, s \in (t_0 - \epsilon, t_0 + \epsilon) \Rightarrow l(\gamma | [t, s]) = c | t - s|.$$

That is, if γ locally minimizes the distance among its points. If $f: X \hookrightarrow$ is an isometry and γ is a geodesic then clearly $f \circ \gamma$ is a geodesic. We denote

$$Isom(X) = \{ f : X : f \ \mathcal{C}^1 isometry \}$$

and $\text{Isom}^+(X) \subset \text{Isom}(X)$ the subset of orientation preserving isometries.

Observe the following consequence of Schwartz-Pick.

Proposition 1.0.2. $f : \mathbb{D} \hookrightarrow holomorphic$, then

$$\forall a, b \in \mathbb{D}, d(fa, fb) \leq d(a, b).$$

There is = for some pair $a \neq b$ if and only if $f \in \mathcal{M} \circ \mathcal{B}$.

Proof. Considering the line element $ds_{\mathbb{D}} = \frac{2|dz|}{1-|z|^2}$, we deduce directly by Schwartz-Pick

$$f^*\left(\frac{2|dz|}{1-|z|^2}\right) = \frac{2|f'(z)| \cdot |dz|}{1-|fz|^2} \le \frac{2|dz|}{1-|z|^2}$$

which gives the inequality. Moreover, due to continuity we deduce that the the equality d(fa,fb)=d(a,b) for some $a\neq b$ implies that at some z we have $2\frac{|f'(z)|}{1-|fz|^2}=\frac{2}{1-|z|^2}$ which in turn implies that f is in \mathcal{Mob} . The reciprocal follows from the discussion at the beginning of this part.

Corollary 1.0.3. $\operatorname{Aut}(\mathbb{D}) = \operatorname{Isom}_{P}^{+}(\mathbb{D}).$

Proof. If $f \in \operatorname{Aut}(\mathbb{D})$, we've already seen that it is of the form $f(z) = e^{i\theta}\varphi_{\alpha}(z)$, for some $\theta \in \mathbb{R}, \alpha \in \mathbb{D}$; one checks directly that $z \mapsto e^{i\theta}$ and φ_{ϕ} preserve the Poincaré metric, therefore $\operatorname{Aut}(\mathbb{D}) \subset \operatorname{Isom}_P^+(\mathbb{D})$.

Conversely, if $f: \mathbb{D} \subset$ is an orientation preserving isometry, then f is conformal (since $\mathrm{d}s_P$ is conformal), \mathcal{C}^1 and preserves orientation. Therefore is holomorphic, and by the previous proposition it is a Möbius transformation.

Since $z \mapsto \bar{z}$ is an orientation reverse involution, we get:

Corollary 1.0.4. $\operatorname{Isom}_P(\mathbb{D}) = \operatorname{span} \{\operatorname{SU}(1,1), z \mapsto \bar{z}\}.$

Here is an important application.

Geodesics in \mathbb{D} Let $a \in \mathbb{D} \cap \mathbb{R}_{>0}$, a = x + i0 and consider the curve $\gamma(t) = tx$ and any other curve $\tilde{\gamma}$ in \mathbb{D} satisfying $\tilde{\gamma}(0) = 0$, $\tilde{\gamma}(1) = a$.

Write $\tilde{\gamma}(t) = u(t) + iv(t)$ and compute its length

$$l(\tilde{\gamma}) = \int_0^1 \frac{2\sqrt{\dot{u}^2 + \dot{v}^2}}{1 - (u^2 + v^2)} \, \mathrm{d}t \ge \int_0^1 \frac{2|\dot{u}|}{1 - u^2} \, \mathrm{d}t = 2\int_0^x \frac{du}{1 - u^2} = \log(\frac{1 + x}{1 - x}) = l(\gamma).$$

We deduce that γ minimizes the distance between 0 and a, and by the same computation, given two points in $\mathbb{D} \cap \mathbb{R}_{>0}$ the horizontal segment minimizes the distance between them. We deduce that γ is a geodesic and $d(0, a) = \log(\frac{1+x}{1-x})$.

Now if $a, b \in \mathbb{D}$ are any pair of points we can compute

$$\begin{split} \mathrm{d}(a,b) &= \mathrm{d}(\varphi_a(a),\varphi_a(b)) = \mathrm{d}(0,\varphi_a(b)) = \mathrm{d}(0,|\varphi_a(b)|) \\ &= \log \frac{1 + \left|\frac{b-a}{1-\bar{a}b}\right|}{1 - \left|\frac{b-a}{1-\bar{a}b}\right|} = \log \left(\frac{|1-\bar{a}b| + |b-a|}{|1-\bar{a}b| - |b-a|}\right). \end{split}$$

1.1 Geodesics in \mathbb{H}

Consider the Cayley transform $T: \mathbb{H} \to \mathbb{D}$,

$$T(z) = \frac{z - i}{z + i}.$$

As $T'(z) = \frac{2i}{(z+i)^2}$, the get

$$T^* ds_{\mathbb{D}}|_{Tz} = \frac{2}{|z+i|^2} \frac{2|dz|}{1 - \left|\frac{z-i}{z+i}\right|^2} = \frac{4|dz|}{|z+i|^2 - |z-i|^2} = \frac{|dz|}{\operatorname{Re}(-iz)} = \frac{|dz|}{\operatorname{Im}(z)} = ds_{\mathbb{H}}.$$

That is, $T: \mathbb{D} \to \mathbb{H}$ is an isometry.

Let us now compute the hyperbolic distance in \mathbb{H} . We start considering the particular case a=iy,b=i and observe that

$$d_{\mathbb{H}}(a,i) = d_{\mathbb{D}}(T(a),0) = \log \frac{1+r}{1-r}, \quad r = |T(a)|.$$

Since $r = \frac{|x-1|}{x+1}$, we get

$$\frac{1+r}{1-r} = \frac{x+1+|x-1|}{x+1-|x-1|} = \begin{cases} x & x \ge 1\\ \frac{1}{x} & x < 1 \end{cases}$$

hence

$$d_{\mathbb{H}}(a, i) = |\log x|.$$

Next suppose that b=iy' and consider the isometry $f(z)=\frac{z}{y'}$; we get

$$d_{\mathbb{H}}(a,b) = d_{\mathbb{H}}(f(a),i) = |\log \frac{y}{y'}|.$$

We also note that since $d_{\mathbb{H}}(\cdot,\cdot)$ is invariant under translations,

$$a = x + iy, b = x + iy' \Rightarrow \mathbf{d}_{\mathbb{H}}(a, b) = |\log \frac{y}{y'}|$$

The general case can be treated similarly.

We now use the (transitive) action $PSl_2(\mathbb{R}) \curvearrowright \mathcal{N}_{hyp}$ and conclude that

$$\mathcal{N}_{hyp} \subset \{ \text{traces of geodesics of } \mathbb{H} \}$$

In fact, those sets are equal.

Theorem 1.1.1. $\mathcal{N}_{hyp} = \{ traces \ of \ geodesics \ of \ \mathbb{H} \}.$

Proof. Denote by $\gamma_{p,v}$ the geodesic determined by $(p,v) \in T\mathbb{H}$; it is no loss of generality to restrict ourselves to the case |v|=1. Take one of such geodesics and consider the non-euclidean line L passing through p and tangent to v. Observe that L is well defined: if v is vertical this is obvious, otherwise consider the straight line which passes through p and is perpendicular to v, and let O be the point of intersection of this line with the x-axis. The semicircle centered at O with radius |O-p| is the aforementioned L.

Figure 1.1: Possible non-euclidean lines.

Consider the Möbius transformation M sending $l(L) \mapsto 0, p \mapsto i, r(l) \to \infty$; necessarily M sends L to the vertical axis, whereas $M(\mathbb{R})$ is a line passing trough 0 that is perpendicular to \vec{oy} . It follows that $M(\mathbb{R}) = \mathbb{R}$ and $M = M_A$ for some $A \in PSl_2(\mathbb{R})$.

We know that M is an isometry, and in particular $M(\gamma_{i,i})$ is the geodesic passing through p with tangent vector M'(p). But note that $M(\gamma_{i,i})$ is a parametrization of L (with unit speed), hence M'(p) is the tangent to L at z, i.e. M'(p) = v. This shows that $M(\gamma_{i,i}) = \gamma_{z,p}$, and in particular $\gamma_{z,p}$ is a parametrization of L.

Remark 1.1.1. The following picture contains an important historical fact.

Figure 1.2: Infinitely many parallel "lines" to \vec{oy} through the point a.

The 5th postulate of Euclides does not hold in the geometry model (\mathbb{H} , $\mathrm{d}s_P$).

A similar argument shows the following.

Proposition 1.1.2. Given $a \neq b \in \mathbb{H}$ there exists a unique geodesic¹ $\gamma : \mathbb{R} \to \mathbb{H}$ such that $\gamma(0) = a, \gamma(1) = b$.

Proof. Without loss of generality a, b are not on the same vertical line (otherwise the result is direct). Let C be the semi-circle containing a, b and denote by l < r its intersection with \mathbb{R} .

Define $f(z)=\frac{z-r}{z-l}$, and observe that $f\in \operatorname{Aut}(\mathbb{H})$ satisfies $f(r)=0, f(l)=\infty$, therefore $f(C)=\vec{oy}$. Since \vec{oy} is the unique geodesic between f(a),f(b), the result follows.

During the proof of the previous theorem we have also shown that the action $PSl_2(\mathbb{R}) \curvearrowright T_1\mathbb{H} = \mathbb{H} \times \mathbb{S}^1$ given by

$$A \cdot (z, v) = (M_A(z), M'_A(z)v)$$

is transitive. We readily compute the stabilizer of (i, i):

- 1. $\frac{ai+b}{ci+d} = i \Rightarrow a = d, b = -c$.
- 2. $\frac{1}{(ci+d)^2}i = i \Rightarrow -c^2 + d^2 + 2cdi = 1 \Rightarrow a^2 b^2 = 1, ab = 0.$

Thus b=c=0, a=d=1, and the stabilizer is just the identity. By the orbit-stabilizer theorem we conclude.

Proposition 1.1.3. There exists a smooth $PSl_2(\mathbb{R})$ -equivariant identification $T_1\mathbb{H} \approx PSl_2(\mathbb{R})$. A point $(z, v) \in T_1\mathbb{H}$ is identified with the matrix A such that $M_A(i) = z$, $M'_A(i) = v$.

We have remarked that T sends $\partial \mathbb{H} = \mathbb{R}$ to $\partial \mathbb{D} = \mathbb{S}^1$; these are called the *boundaries at* ∞ . Let a = x + iy, $b = x + i\epsilon$; by direct computation we get

$$\lim_{\epsilon \to \infty} \mathrm{d}_{\mathbb{H}}(a,b_{\epsilon}) = \lim_{\epsilon \to 0} |\log \frac{\epsilon}{y}| = \infty.$$

That is, $d_{\mathbb{H}}(a, \partial \mathbb{H}) = \infty$, and likewise $d_{\mathbb{H}}(a, \partial \mathbb{D}) = \infty$.

Here we don't insists on γ' having unit norm.

²Thus, the action $PSl_2(\mathbb{R}) \curvearrowright T_1\mathbb{H}$ corresponds to left matrix multiplication.

1.2 Geodesics in the disc model

Since the Cayley transform is an isometry between \mathbb{H} and \mathbb{D} sending \mathbb{R} to \mathbb{S}^1 , and since Möbius transformations sends lines/circles into lines/circles while preserving angles, we imediately deduce the following.

Corollary 1.2.1. The traces of geodesics in \mathbb{D} are the curves $\mathbb{D} \cap T$ where T is a circle $\perp \partial \mathbb{D}$.

It is instructive however to make a direct approach. Define $I:\mathbb{D}$ \leftrightarrows the geometrical inversion, $I(z)=\frac{1}{z}$.

Clearly I preserves angles, and if $C \subset \hat{\mathbb{C}}$ is a circle/line then I(C) is also a circle/line.

Claim. Given $P, Q \in \mathbb{S}^1$ there exists a unique circle C passing through P, Q that is orthogonal to \mathbb{S}^1 . Consider the picture below.

If $\{P,Q\} = C \cap \mathbb{S}^1$ and $C \perp \mathbb{S}^1$ then necessarily the center (R) of C is in the intersection of the tangents to \mathbb{S}^1 through P,Q, and the radius of C is |P-R|. This shows uniqueness, also gives a recipe to construct C.

Proposition 1.2.2. Let $C \subset \mathbb{C}$ be a circle. Then C is orthogonal to $\mathbb{S}^1 \Leftrightarrow I(C) = C$.

Proof. Let $\{P,Q\} = \mathbb{S}^1 \cap C$.

- \Rightarrow Then I(C) is a circle orthogonal to C through P,Q thus by uniqueness of such circle, I(C)=C.
- \Leftarrow Assume that $\angle_P(C,\mathbb{S}^1) < \frac{\pi}{2}$. Since I inverts the sense of the angles, we see that C cannot be fixed, as I(P) = P.

Now take $M, N \in \mathbb{D}$ and denote M' = I(M), N' = I(N). Consider C the (unique) through M, N, M' (or equivalently, through M, N, N').

Then C is clearly fixed under I, therefore $C \perp \mathbb{S}^1$. Denote $\tilde{C} = C \perp \mathbb{S}^1$ and observe that $\varphi_P(\tilde{C})$ is a circle/line perpendicular to \mathbb{S}^1 joining $\varphi_P(P) = 0$ with φ_PQ ; therefore $\varphi_P(\tilde{C})$ is a diameter in \mathbb{D} , and in particular is the unique (traze of) geodesic these two points. We conclude that \tilde{C} is the traze of the unique geodesic joining P with Q.

1.3 Hyperbolic circles

Consider the hyperbolic circle in \mathbb{D} of center 0 and radius r > 0,

$$C = \{z \in \mathbb{D} : \mathsf{d}(0, z) = r\} = \{z \in \mathbb{D} : \log \frac{1 + |z|}{1 - |z|} = r\}.$$

Note that

$$\log \frac{1+|z|}{1-|z|} = r \Leftrightarrow |z| = \frac{e^r - 1}{e^r + 1} = \tanh(\frac{r}{2}).$$

We deduce that C coincides with the euclidean circle of center 0 and radius $\tanh(\frac{r}{2})$. Likewise

$$D_P(0,r) = D_{\text{Euc}}(0, \tanh(\frac{r}{2})).$$

Now consider an arbitrary hyperbolic circle $C=C_P(z_0,r)$, and apply the map φ_{z_0} ; we get

$$\varphi_{z_0}(C) = C_P(0, r) = C_{\text{Euc}}(0, \tanh(\frac{r}{2}))$$

We deduce that C is an Euclidean circle of different radius and typically different center (if $z_0 \neq 0$).

Corollary 1.3.1. (\mathbb{D} , d_P) is complete.

As consequence of the Hopf-Rinow theorem, $K \subset \mathbb{D}$ is compact if and only if is closed and bounded. Similarly for \mathbb{H} .

CHAPTER 2

The uniformization theorem

Here we'll prove the followin important theorem.

Theorem 2.0.1. Let $U \subset \mathbb{C}$ be simply connected domain, $U \neq \mathbb{C}$. Then there exists $F: U \to \mathbb{D}$ bi-holomorphic.

In other words any simply connected domain in \mathbb{C} which is not the whole plane is conformally equivalent to the disc. Note that \mathbb{C} is not holomorphically equivalent to \mathbb{D} (by Liouville's theorem).

The proof is "surprinsingly simple¹".

Lemma 2.0.2. If $U \subsetneq \mathbb{D}$ is a simply connected domain then there exists an holomorphic embedding $F: U \to \mathbb{D}$ such that

$$a, b \in U, a \neq b \Rightarrow d_{\mathbb{D}}(fa, fb) > d_{\mathbb{D}}(a, b).$$

Proof. Take $\alpha \in \mathbb{D} \setminus U$ and note that since $\varphi_{\alpha} : \mathbb{D} \circlearrowleft$ does not have any zeros in the simply connected domain U, there exists $g \in H(U)$ such that $g^2 = \varphi_{\alpha}$. We claim that g is injective: indeed, if g(a) = g(b) then $\varphi_{\alpha}(a) = \varphi_{\alpha}(b)$ and a = b.

Let $h(z)=z^2, h:\mathbb{D} \circlearrowleft$ contracts the Poincaré metric, and since $h\circ g=\varphi_\alpha$ is an isometry, necessarily g expands the Poincaré metric.

Proof of the Uniformization Theorem. Consider the family

$$\mathcal{F} = \{ f : U \to \mathbb{D} : f \in H(U), f \text{ 1-1 (embedding)} \}.$$

¹According to Thurston...

Note that for every $f \in \mathcal{F}$, the set $f(U) \subset \mathbb{D}$ is a simply connected domain.

Claim: $\mathcal{F} \neq \emptyset$.

Choose $p \notin U$ and define $h: U \to \mathbb{C}, h(z) = z - p$; h is holomorphic in U and without zeros, therefore there exists $g \in H(U)$ with $g^2 = h$. Arguing as in the lemma we see that

$$a \neq b \Rightarrow q(a) \neq \pm q(b)$$
.

The set V = g(U) is a domain, and $w \in V$ implies that $-w \notin V$. Take $q \in V, q \neq 0$ and choose 0 < r < |q| such that $\mathbb{D}(q,r) \subset V$.

Claim: $\mathbb{D}(-q,r) \cap V = \emptyset$.

Otherwise if $w \in \mathbb{D}(-q,r) \cap V$, then $|w+q| < r \Rightarrow |q-(-w)| < r \Rightarrow -w \in V$, which is not true.

We can then define $f: U \to \mathbb{C}$ by

$$f(z) = \frac{r}{g(z) + q}$$

and note that f is holomorphic, injective and |f| < 1, hence $f \in \mathcal{F}$.

Next we fix $q \in U$ and let $M = \sup\{|f'(q)| : f \in F\}$; since $\mathcal{F} \neq \emptyset$ we have M > 0, and by Schwartz pick necessarily $M < \infty$. Note also that \mathcal{F} is normal, because it is a uniformly bounded family of holomorphic functions (Montel's theorem).

Choose $(f_n)_n \subset \mathcal{F}$ with $\lim_n |f'_n(q)| = M$, and without loss of generality we can assume that $||f_n - f||_{\mathcal{C}^0} \xrightarrow[n \to \infty]{} 0$, for some $f \in H(U)$. By Hurewicz' theorem we know that f is either injective or constant, but since |f'(q)| = M > 0, necessarily f is injective.

As $f_n(U) \subset \mathbb{D} \forall n \Rightarrow f(U) \subset \mathfrak{cl}(\mathbb{D})$; on the other hand f is open, and therefore $f(U) \subset \mathbb{D}$. We have shown that $f \in \mathcal{F}$.

Claim: $f(U) = \mathbb{D}$.

Otherwise, using the lemma we could find $g:f(U)\to \mathbb{D}$ injective that expands the Poincaré metric. But then

$$||g'(fq) \cdot f'(q)||_P = M \cdot ||g'(fq)||_P > M$$

which is absurd since $g \circ f \in \mathcal{F}$.

We have thus found $f: U \to \mathbb{D}$ bi-holomorphic.

Question. Consider $U \neq \mathbb{C}$ simply connected domain, and $f: U \to \mathbb{D}$ bi-holomorphic. Can we extend f to an homeomorphism $F: cl(U) \to cl(\mathbb{D})$?

Not in general; the boundary ∂U could be very complicated and not a circle.

However the following is known.

Theorem 2.0.3 (Carathéodory). Let $f:U\to \mathbb{D}$ be a conformal map, $U\subset \mathbb{C}$ simply connected. Then f extends to an homeomorphism $F:\operatorname{cl}(U)\to\operatorname{cl}(\mathbb{D})$ if and only if ∂U is a Jordan curve.