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CHAPTER 1

Hyperbolic Geometry

Recall that for o € D the map ¢, : D — D defined by

Z—

Pal2) = 1—az

is bi-holomorphic (¢! = ¢_,), sends a to 0 and 0 to —a. Furthermore,

L— |z

¥al(?) = m

and in particular

0, (0) =1~ af?
1

/ —
9004(05) - 1— |Oé|2'

Suppose that f : D © is holomorphic and fix a € D. The holomorphic function h =
©ra © fop_: DO fixes 0, therefore by Schwartz’s lemma |1'(0)| = |¢fa| - | f'(@)] - |9-a(0)] < 1,
that is

/ 1—[f(@)
|f'(a)] < 1——|04|2

There is equality if and only there exists A € S' such that f = p_;, 0m,) 0 p,, where my(z) = \- z;
in this case f € Jl o6, therefore bijective.
In particular

|f'(0)] <1 —|f(0)|? if f is not bijective then | f'(0)] < 1 — |£(0)|2.

Theorem 1.0.1 (Schwartz-Pick Lemma). If f : D — D is holomorphic and z € D, then

/ L— /(=)

Equality implies that f is Mobius.



2 Hyperbolic Geometry

On H we consider the Riemannian metric
| dz| _
(Tm(2))?’

that is, for v,w € R? and z € H we compute the inner product of the vectors v,w € T,H as

2 _
dsg =

v-w

where v - w is the Euclidean inner product between these two vectos. This metric is conformal, in
particular

angles measured with dsy are the same as measured with the Euclidean metric.

Similarly, on D consider the Riemannian metric given by

4|dz|?

ds? = ——1__
BT TP

Definition 1.0.1. The metric defined by dsy, dsp is the Poincaré metric in the space H, D.

The induced distance, called the Poincaré distance in X = H, D is

d(a,b) = inf{l(7) : v:[0,1] = X,~(0) = a,v(1) = b}

where

szﬁdwwwmv

exercise Show that (H, dsy), (D, dsp) are have constant sectional curvature K, = —1.

Convention From now on, X = D, H are always equipped with their Poincaré metric, unless
explicitly stated, and every metric notion is referred to this metric. For example, if we say that
f: X © is an isometry, we mean an isometry for the Poincaré metric, f, dsy = dsy.

Recall:. Let X be a Riemannian manifold (say, a surface equipped with a Riemannian metric). A
curve v : I — X is a geodesic if its derivative has constant norm ¢, and

Vipe I3e > 0:t,s € (tg — €, to+€) = l(7][t, s]) = c|t — s|.

That is, if v locally minimizes the distance among its points. If f : X © is an isometry and v is a
geodesic then clearly f o~ is a geodesic. We denote

Isom(X) = {f: X ©: f C'isometry}
and Isom™ (X)) C Isom(X) the subset of orientation preserving isometries.
Observe the following consequence of Schwartz-Pick.
Proposition 1.0.2. f : D © holomorphic, then
Va,b € D,d(fa, fb) < d(a,b).

There is = for some pair a # b if and only if f € Mo 6.

pdcarrasco@mat.ufmg.br



Proof. Considering the line element dsp = %, we deduce directly by Schwartz-Pick

I 2|d=| \ _2f'(2)| - |da| _ 2|dz]
L—]e2)  1—|fzP ~ 11—z

which gives the inequality. Moreover, due to continuity we deduce that the the equality

d(fa, fb) = d(a,b) for some a # b implies that at some z we have 21|fl‘§zz)‘|2 = 1jz|2 which in
turn implies that f is in #l-o6. The reciprocal follows from the discussion at the beginning of this
part. |

Corollary 1.0.3. Aut(D) = Isom} (D).

Proof. If f € Aut(D), we've already seen that it is of the form f(z) = ¢?p,(z), for some
0 € R, € D; one checks directly that z — ¢ and ¢, preserve the Poincaré metric, therefore
Aut(D) C Isom5(D).

Conversely, if f : D © is an orientation preserving isometry, then f is conformal (since dsp
is conformal), C' and preserves orientation. Therefore is holomorphic, and by the previous
proposition it is a Mobius transformation. [

Since z — Z is an orientation reverse involution, we get:
Corollary 1.0.4. Isomp(D) = span {SU(1, 1),z — z}.

Here is an important application.

Geodesics in D Let a € DN R.y,a = x + i0 and consider the curve ~(¢) = tx and any other
curve 7 in D satisfying 4(0) = 0,5(1) = a.

Write 7(t) = u(t) + iv(t) and compute its length

L 9 /02 + 2 L o x 1
l(ﬁ)z/o “—”dtz/O #dt:Q/O W og(2TE) Z ().

1 — (u? +0?) — u? 1 —u? -z

We deduce that v minimizes the distance between 0 and a, and by the same computation, given
two points in D N R+, the horizontal segment minimizes the distance between them. We deduce
that v is a geodesic and d(0, a) = log(12).

pdcarrasco@mat.ufmg.br



4 Hyperbolic Geometry 1.1

Now if a,b € D are any pair of points we can compute

d(a,b) = d(soa( ) %(b)) = d(0,4a(b)) = (0, [¢a(b)])
1—a —

_1og LH I8 g (ML= el

1_\1ab 11— ab|— [b—a

1.1 Geodesics in H

Consider the Cayley transform 7" : H — D,

zZ—1
T(z) = :
(2) z+1
AsT'(z) = (ZH e the get
2 2|d 4|d d d
T dsply. = d=| _ |dz| _ _ldz| 92l _ 4.

|z +i]21 = ‘Z_:f lz+i2— |z —i]2 Re(—iz) Im(z)

That is, 7' : D — H is an isometry.
Let us now compute the hyperbolic distance in H. We start considering the particular case
a = iy, b = i and observe that

: 1+r

dg(a,i) = dp(7T'(a),0) = log T = |T(a)|.
Since r = ‘Z}', we get

I+r x+1+|z—1 z z21

l—r 24+1—|z—1] 1 x <1

xZ

hence

du(a,i) = |logx|.
Next suppose that b = iy’ and consider the isometry f(z) = =5 we get

: Y
dH(a7 b) - dH(f<a)7 Z) = | log ?‘
We also note that since dyg(-, -) is invariant under translations,
a=uax+iy,b=1z+1iy = du(a,b) = ]logg,|
Y

The general case can be treated similarly.
We now use the (transitive) action PS1,(R) ~ W, and conclude that

Npyp C {traces of geodesics of H}

In fact, those sets are equal.

pdcarrasco@mat.ufmg.br



1.1 Geodesics in H 5

Theorem 1.1.1. W, = {traces of geodesics of H}.

Proof. Denote by v, , the geodesic determined by (p, v) € TH; it is no loss of generality to restrict
ourselves to the case |v| = 1. Take one of such geodesics and consider the non-euclidean line L
passing through p and tangent to v. Observe that L is well defined: if v is vertical this is obvious,
otherwise consider the straight line which passes through p and is perpendicular to v, and let O
be the point of intersection of this line with the z-axis. The semicircle centered at O with radius
|O — p| is the aforementioned L.

[N

l l r

Figure 1.1: Possible non-euclidean lines.

Consider the Mobius transformation M sending /(L) — 0,p — i,7(l) — oo; necessarily M
sends L to the vertical axis, whereas M (R) is a line passing trough 0 that is perpendicular to oj.
It follows that M (R) = R and M = M4 for some A € PS15(R).

We know that ) is an isometry, and in particular M (v, ;) is the geodesic passing through p
with tangent vector M’(p). But note that M(~,,) is a parametrization of L (with unit speed),
hence M’(p) is the tangent to L at z, i.e. M'(p) = v. This shows that M(v,;) = 7.,, and in
particular +, , is a parametrization of L. [ |

Remark 1.1.1. The following picture contains an important historical fact.

A

I :

Figure 1.2: Infinitely many parallel “lines” to oj through the point a.

o
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6 Hyperbolic Geometry 1.1

The 5th postulate of Euclides does not hold in the geometry model (H, dsp).
A similar argument shows the following.
Proposition 1.1.2. Given a # b € H there exists a unique geodesic' v : R — H such that

1(0) = a5(1) = b

Proof. Without loss of generality a, b are not on the same vertical line (otherwise the result is
direct). Let C be the semi-circle containing a, b and denote by [ < r its intersection with R.

b
.9

o&

Define f(z) = %=, and observe that f € Aut(H) satisfies f(r) = 0, f(I) = oo, therefore

z—1’

f(C) = ady. Since oy is the unique geodesic between f(a), f(b), the result follows. [

During the proof of the previous theorem we have also shown that the action PS1,(R) ~
T\H = H x S* given by

A (z,0) = (Ma(z2), M4(2)v)
is transitive. We readily compute the stabilizer of (i,17):

1. ‘Zﬁg:i@a:d,b:—c.

2. gEi=i= =P+ A +2di=1=a? = =1,ab = 0.

Thus b = ¢ = 0,a = d = 1, and the stabilizer is just the identity. By the orbit-stabilizer theorem
we conclude.

Proposition 1.1.3. There exists a smooth PS1,(R)-equivariant® identification T\H =~ PS1,5(R). A
point (z,v) € T1H is identified with the matrix A such that M (i) = z, M',(i) = v.

We have remarked that 7" sends OH = R to 0D = S'; these are called the boundaries at oco.
Let a = x + iy, b = = + ie; by direct computation we get

. , €
lim dg(a, b.) = 11_{% | log§| = 00.

€—00

That is, dy(a, OH) = oo, and likewise dy(a, 9D) = co.

'Here we don’t insists on 4/ having unit norm.
2Thus, the action PS15(R) ~ T, H corresponds to left matrix multiplication.

pdcarrasco@mat.ufmg.br



1.2 Geodesics in the disc model 7

1.2 Geodesics in the disc model

Since the Cayley transform is an isometry between H and D sending R to S*, and since Mo6bius
transformations sends lines/circles into lines/circles while preserving angles, we imediately
deduce the following.

Corollary 1.2.1. The traces of geodesics in D are the curves D N'T where T is a circle 1 OD.

N\

It is instructive however to make a direct approach. Define / : D © the geometrical inversion,

Clearly I preserves angles, and if C' c C is a circle/line then I(C) is also a circle/line.

Claim. Given P,(Q € S* there exists a unique circle C passing through P, Q that is orthogonal to S*.

Consider the picture below.

pdcarrasco@mat.ufmg.br



8 Hyperbolic Geometry 1.2

If{P,Q} = CNS"and C L S' then necessarily the center (R) of C' is in the intersection of the
tangents to S' through P, Q, and the radius of C'is |P — R|. This shows uniqueness, also gives a
recipe to construct C.

Proposition 1.2.2. Let C' C C be a circle. Then C' is orthogonal to S* < I(C) = C.

Proof. Let {P,Q} =S'nC.

= Then I(C) is a circle orthogonal to C' through P, @ thus by uniqueness of such circle,
I(C)=C.

< Assume that Z/p(C,S'") < Z. Since I inverts the sense of the angles, we see that C' cannot
be fixed, as I(P) = P.

Now take M, N € D and denote M’ = I(M), N’ = I(N). Consider C' the (unique) through
M, N, M’ (or equivalently, through M, N, N').

pdcarrasco@mat.ufmg.br



1.3 Hyperbolic circles 9

Then C is clearly fixed under I, therefore C' L S'. Denote C =C L S"and observe that
©op(C) is a circle/line perpendicular to S! joining pp(P) = 0 with ppQ; therefore pp(C) is a
diameter in D, and in particular is the unique (traze of) geodesic these two points. We conclude

that C is the traze of the unique geodesic joining P with Q.

1.3 Hyperbolic circles

Consider the hyperbolic circle in D of center 0 and radius r > 0,

1
C:{zeDzd(O,z):r}:{zeD:log1+|’ZI:r}.
— |z
Note that
1+ |z2| e’ —1 r
1 =r&|z| = = tanh(=).
8T T O = o T tanh(g)

We deduce that C coincides with the euclidean circle of center 0 and radius tanh(%).
Likewise

Dp(0,7) = DEUC(O,tanh(g)).
Now consider an arbitrary hyperbolic circle C' = Cp(2, ), and apply the map ¢.,; we get
T
#20(C) = Cp(0,7) = Cuc(0, tanh(3))

We deduce that C' is an Euclidean circle of different radius and typically different center (if

20 7A O)
Corollary 1.3.1. (D,dp) is complete.
As consequence of the Hopf-Rinow theorem, K C D is compact if and only if is closed and

bounded. Similarly for H.

pdcarrasco@mat.ufmg.br
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Hyperbolic Geometry
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CHAPTER 2

The uniformization theorem

Here we’ll prove the followin important theorem.

Theorem 2.0.1. Let U C C be simply connected domain, U # C. Then there exists F' : U — D
bi-holomorphic.

In other words any simply connected domain in C which is not the whole plane is conformally
equivalent to the disc. Note that C is not holomorphically equivalent to D (by Liouville’s theorem).

f

T

The proof is “surprinsingly simple'”.

Lemma 2.0.2. IfU C D is a simply connected domain then there exists an holomorphic embedding
F : U — D such that

a,b e U,a# b= dp(fa, fb) > dp(a,b).

Proof. Take a € D\ U and note that since ¢, : D O does not have any zeros in the simply
connected domain U, there exists g € H(U) such that g> = ¢,. We claim that g is injective:
indeed, if g(a) = g(b) then ¢, (a) = ¢,(b) and a = b.

Let h(z) = 2% h : D ©O contracts the Poincaré metric, and since i o g = ¢, is an isometry,
necessarily g expands the Poincaré metric. |

Proof of the Uniformization Theorem. Consider the family

F={f:U—-D:feHU),f1-1 (embedding)}.

!According to Thurston...

11



12 The uniformization theorem

Note that for every f € F, the set f(U) C D is a simply connected domain.
Claim: F # (.

Choose p ¢ U and define h : U — C, h(z) = z — p; h is holomorphic in U and without zeros,
therefore there exists g € H(U) with g?> = h. Arguing as in the lemma we see that

a# b= g(a) # £g(b).

The set V' = ¢(U) is a domain, and w € V implies that —w ¢ V. Take ¢ € V,q # 0 and choose
0 < r < |q| such that D(¢q,r) C V.

Claim: D(—q,r) NV = (.

Otherwise if w € D(—¢q,7) NV, then |w+¢q| <r = |¢— (—w)| < r = —w € V, which is not
true.

We can then define f : U — C by

and note that f is holomorphic, injective and |f| < 1, hence f € F.

Next we fix ¢ € U and let M = sup{|f'(¢q)| : f € F}; since F # () we have M > 0, and by
Schwartz pick necessarily M < oo. Note also that F is normal, because it is a uniformly bounded
family of holomorphic functions (Montel’s theorem).

Choose (f,,), C F with lim, | f/(q)| = M, and without loss of generality we can assume that
| fr — fllcc — 0, for some f € H(U). By Hurewicz’ theorem we know that f is either injective
n—oo

or constant, but since |f'(¢)| = M > 0, necessarily f is injective.

As f,(U) C DVn = f(U) C c1(D); on the other hand f is open, and therefore f(U) C D. We
have shown that [ € F.

Claim: f(U) = D.

Otherwise, using the lemma we could find ¢ : f(U) — D injective that expands the Poincaré
metric. But then

lg'(fa) - F(Dllp = M- Nlg'(fD)llp > M

which is absurd since go f € F.

We have thus found f : U — D bi-holomorphic. [ |

Question. Consider U # C simply connected domain, and f : U — D bi-holomorphic. Can we
extend f to an homeomorphism F : c1(U) — c1(D)?

Not in general; the boundary 0U could be very complicated and not a circle.

pdcarrasco@mat.ufmg.br
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However the following is known.

Theorem 2.0.3 (Carathéodory). Let f : U — D be a conformal map, U C C simply connected.
Then f extends to an homeomorphism F : c1(U) — c1(D) if and only if OU is a Jordan curve.

pdcarrasco@mat.ufmg.br
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The uniformization theorem
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