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Abstract

In this note we give an effective version of the Hirsch-Pugh-Shub shadowing theorem.

1 Partially hyperbolic systems

We will be concerned with a generalization of the classical shadowing property for hyperbolic systems.
The setting for this is in the context of partially hyperbolic diffeomorphisms, which we now define.

Definition 1.1. Let M be a closed Riemannian manifold. We say that a Crdiffeomorphism f : M → M is
partially hyperbolic if there exists a continuous splitting of the tangent bundle into a Whitney sum of the form

TM = Eu ⊕ Ec ⊕ Es

where neither of the bundles Es nor Eu are trivial, and such that

1. all bundles Eu, Es, Ec are Df -invariant;

2. for all x ∈ M and for all unit vectors vσ ∈ Eσ
x (σ = s, u, c),

(a) ∥Dxf(v
s)∥ < ∥Dxf(v

c)∥ < ∥Dxf(v
u)∥;

(b) ∥Dxf(v
s)∥ < 1 < ∥Dxf(v

u)∥.

Remark 1.1. It is no loss of generality to assume that the Riemannian metric is such that the bundles
Es, Ec, Eu are orthogonal, and we will assume that from now on.

The bundles Es, Eu, Ec are the stable, unstable and center bundle respectively. We also define the
bundles Ecu = Ec ⊕Eu and Ecs = Es ⊕Ec, the center stable and center unstable bundles. Some important
examples of partially hyperbolic diffeomorphisms are ergodic automorphisms of the torus, time-1 maps
of hyperbolic flows, circle extensions over Anosov diffeomorphisms, and perturbations of those. For a
discussion of these and other examples we refer to [5].

The stable manifold theorem (see [8]) implies that the bundles Eu and Es are integrable to continuous
foliations Wu,Ws whose leaves are of the same degree of differentiability than f . These leaves are
homeomorphic to Euclidean spaces of the corresponding dimension. Nonetheless, the transversal regularity
of those foliations is only Hölder in general [4]. The integrability of the center bundle Ec, on the other
hand, cannot be asserted in general as the example in [7] shows (see also [3]). Establishing necessary
and sufficient conditions that guarantee this property remains one of most important problems in the area.
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Some partial results in this matter can be found in [6],[2] and [1]. Let us point out also that for most
known examples the center bundle is integrable.

Here however, we are interested in the properties of the foliations that integrate the bundles
Ec, Ecs, Ecu. We will work then with systems satisfying the following.

Definition 1.2. A partially hyperbolic diffeomorphism is dynamically coherent if the bundles Ec, Ecu and
Ecs are integrable to C1,0 invariant foliations1 Wc,Wcu,Wcs and such that

Wc = {W cu ∩ W cs : W cu ∈ Wcu,W cs ∈ Wcs}.

As explained in [2], it follows that

1. Ws sub-foliates Wcs

2. Wu sub-foliates Wcu

Notation: for r > 0, x ∈ M,σ ∈ {s, c, u, cs, cu} denote W σ(x, r) the plaque centered atx of radius r of the
foliation W σ.

Local Product Structure. Dynamical coherence implies that the system has local product structure,
namely there exists some clps > 0 such that if d(x, y) < clps and Px, Py denote plaques of Wc centered at
x, y of radius clps then W s(Px, clps) meets W u(Py, clps) along a plaque of Wc of radius at least clps/2. In
fact, local product structure is equivalent to dynamical coherence; the proof is not hard.

If the system has local product structure one can specify locally each plaque as follows. For a point
x ∈ M we define the sets Hx = W u(Px, 2clps), Vx = W s(Px, 2clps). Given any two points x, y ∈ M such
that d(x, y) < clps both intersections Hx ∩ Vy and Vx ∩ Hy consist of center plaques, and by reducing clps
if necessary, there will be only one center plaque in the intersection Hx ∩ Vy meeting W u(x, 2clps), and
likewise there exists only one center plaque of Vx ∩ Hy intersecting W s(x, 2clps). One sees then that the
plaque through y is specified by these two points in W u(x, 2η) and W s(x, 2clps).

It is no loss of generality to assume that clps is less than the injectivity radius of exp : TM → M , and
by reducing this constant even more (using that D0 exp = Id), that for x, y ∈ M,d(x, y) < clps implies

d(x, y) = inf{length(γ) : γ : [0, 1] → M piecewise differentiable, γ̇ ∈ Es ∪ Ec ∪ Eu}.

Given x, y ∈ M such that d(x, y) < δ, where 0 ≤ δ ≤ clps we define the bracket between x and y as

[x, y] = W s(x, 2clps) ∩W cu(y, 2clps)

Since exp | : {(x, v) ∈ TM : ∥v∥ ≤ clps} → M is nearly an isometry and since the angle between Ec, Eu

and Ec, Es is bounded away from zero, one sees that for some constant A > 0 depending only on the
angles we have

d(x, [x, y]) < Aδ (1)

d(y, [x, y]) < Aδ (2)

Holonomy. Let f : M → M be a dynamically coherent partially hyperbolic diffeomorphism and fix
once and for all a differentiable subbundle N ⊂ TM transverse to Ec, with small angle with Es ⊕ Eu.
For 0 < r ≤ clps, x ∈ M denote Dsu(x, r) = exp({(x, v) : ∥v∥ < r, v ∈ N su}). Then for x, y such that
y ∈ W c(y,

clps
2 ), the center holonomy Hc

y,x : Dsu(x,
clps
2 ) → Dsu(y, clps) can be defined: for z ∈ Dsu(x, r)

Hc
y,x(z) = W c(z, clps) ∩Dsu(y, clps).

We will also consider Hc
y,x|W s(x,

clps
2 ) → W s(y, clps) (if y ∈ W cs(x,

clps
2 )) and Hc

y,x|W u(x,
clps
2 ) →

W u(y, clps) (if y ∈ W cu(x,
clps
2 )).

The foliations Ws,Wu also (of course) induce related holonomy maps Hs, Hu. For the domain of Hs

we use discs inside center-unstable leaves, while for Hu we use center-stable discs. We omit the discussion,
which is analogous to what we wrote above.

1This means that the regularity of the leaves is C1 while the transversal regularity is continuous.
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2 Pseudo-orbits

We recall some definitions.

Definition 2.1. Let f : M → M be a homeomorphism preserving a foliation F .

1. A sequence x = {xn : N1 ≤ N ≤ N2} where N1 ∈ Z ∪ {−∞}, N2 ∈ Z ∪ {∞} is called a δ-pseudo-orbit
for f if d(fxn, xn+1) ≤ δ for every n = N1, . . . , N2 − 1.

2. The pseudo-orbity = {yn : N1 ≤ N ≤ N2} ϵ-shadows the pseudo-orbit
x = {xn : N1 ≤ N ≤ N2} if d(xn, yn) < ϵ for every n = N1, . . . , N2.

3. We say that the δ-pseudo-orbit x is subordinated to the foliation F if for every n ∈ {N1, . . . , N2 − 1},
f(xn) belongs the the plaque of F tha is centered at xn+1 and has radius δ.

Now we fix a f : M → M a dynamically coherent partially hyperbolic diffeomorphism.

Definition 2.2. Let R > 0 and let x = (xn : N1 ≤ n ≤ N2) be a pseudo-orbit. We say that x is a R-center
pseudo-orbit if it is a δ-pseudo-orbit subordinated to Wc.

The first relevant theorem involving pseudo-orbitsof these notes is the following.

Theorem A (Shadowing I). Let f : M → M be a dynamically coherent partially hyperbolic diffeomorphism.
Then there exists a constant C(f) > 0 (only depending of f) such that for R sufficiently small, any R-pseudo-
orbit can be C(f)R-shadowed by a C(f)R-center pseudo-orbit.

This result is due to Hirsch, Pugh and Shub (see theorem 7A-2 in [8]), where it is proved that given
ϵ > 0 there exists R > 0 such that any R-pseudo-orbit can be ϵ-shadowed by aa ϵ-pseudo-orbit subordinate
to the foliation Wc. Here we make explicit the relation between R and ϵ.

Observe that in the theorem above, if we assume that x is close to be a center pseudo-orbit, we expect
to be able to shadow it with a center pseudo-orbit y with less error in the transverse direction. Let us
formalize this notion.

Definition 2.3. Let 0 < δ ≤ R and let x = (xn : N1 ≤ n ≤ N2) be a pseudo-orbit. We say that x is a
(R, δ)-quasecenter pseudo-orbit if it is a R-pseudo-orbit and

d (xn+1,W
s(xn+1, clps) ∩W cu(fxn, R)) , d (xn+1,W

u(xn+1, clps) ∩W cs(fxn, R)) < δ,

for all N1 ≤ n < N2.

Remark 2.1. The definition of quasecenter pseudo-orbit was suggested by J. Correa.

We can prove the following.

Theorem B (Shadowing II). Let f : M → M be a dynamically coherent partially hyperbolic diffeomorphism,
and assume that its center bundle is C1. Then there exist constants R0, C(f) > 0 so that for each 0 < R ≤ R0

we can find 0 < δR < R and a continuous function DR : (0, δR] → [1, oo] verifying

1. DR(δ) −−−→
δ→0

1.

2. Any (R, δ)-quasecenter pseudo-orbit can be C(f)δ-shadowed by a DR(δ)R-center pseudo-orbit.

One should be able to prove a more general version of the above without assuming differentiability of
the center bundle, replacing this condition by Hölder continuity of thge the center holonomies; possibly,
it’ll be necessary to relinquish the precise control given above. As these are expository notes, and since
several interesting systems satisfy the cited conditions (for example, regular elements in Anosov actions), I
won’t worry about the general case.
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3 Proof of the Theorem A

Denote
λs := max{∥Dxf |Es∥ : x ∈ M}

and recall the definition of A given in (1). Due the orthogonality of the bundles it follows that A −−−−→
clps→0

1,

thus by reducing clps it is no loss of generality to assume that r = Aλs < 1. Let L = max{Lip(f),Lip(f−1)}

and 0 < η < clps so that 2η
(

AL
1−r

)2
< clps. We consider only 0 < R < η.

First assume that we have a finite R-center pseudo-orbit x = {x0, . . . , xN}, and define the points
y0, . . . , yN by

• y0 = x0

• yn = [xn, f(yn−1)] for n = 1, . . . , N.

Observe that d(x1, y1), d(f(y0, y1) < AR. We want to estimate d(xn, yn); suppose then that we have
proved that d(xn−1, yn−1) < Aδ(1 + r + · · · rn−1), with yn−1 ∈ W s(xn−1). Then we get

d(f(yn−1), xn) ≤ d(f(yn−1), f(xn−1)) + d(f(xn−1), xn)

≤ λsd(yn−1, xn−1) +R ≤ AλsR(1 + r + · · · rn−1) +R < R(1 + r + · · · rn),

and hence by (1)

d(xn, yn) = d(xn, [xn, f(yn−1)]) ≤ Ad(xn, f(yn−1)) < AR(1 + r + · · · rn) < A

1− r
R

d(f(yn−1), yn) <
A

1− r
R.

We have thus constructed a sequence y = {y0, . . . , yN} satisfying

1. d(f(yn), xn+1) ≤ 1
1−rR

2. d(xn, yn), d(f(yn), yn+1) ≤ A
1−rR

3. y is subordinate to Wcu.

It follows by dynamical coherence that if our original pseudo-orbit x is subordinate to Wcs then y is
subordinate to Wc.

Now we apply the same argument to the AL
1−rR-pseudo-orbitfor f−1, y−1 = {yN , yN−1, . . . y0} and get

another pseudo-orbit z−1 = {zN , zN−1, . . . z0} with the properties

1. d(f−1zn+1, zn) ≤ A2L
(1−r)2

R.

2. d(zn, yn) ≤ A2L
(1−r)2

R

3. z−1 is subordinate to Wc.

Finally we end up with a
(

AL
(1−r)

)2
R-pseudo-orbitz = {z0, . . . , zN} for f subordinate to Wc. Notice

that

d(xn, zn) ≤ d(xn, yn) + d(zn, yn) ≤
A

1− r
R+

(
AL

(1− r)

)2

R = C(f)R.

We have thus proved the theorem in the case where the pseudo-orbitis finite. Now suppose that our
pseudo-orbitx is infinite (for example bi-infinite). The previous argument allows us to find for every N a
C(f)R-pseudo-orbit zN which
CR-shadows the segment {x−N , . . . , xN}.

Since M is compact we can find a subsequence {Nk}k such that zNk
n −−−→

n→∞
zn. The sequence z = {zn}n

is a C(f)R-pseudo-orbitwhich C(f)R-shadows x, for numbers R so that CR < η.
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4 Proof of Theorem B

The argument is the same used in the proof of Theorem A, using more precise estimates. Since Ec is C1,
the center holonomies are differentiable, and in particular Lipschitz continuous: for 0 < R <

clps
2 there

exists Chol(R) ≥ 1 so that if y ∈ W c(x,R) then

z, z′ ∈ Dsu(x,R) ⇒ d(Hc
y,x(z), H

c
y,x(z

′)) ≤ Chold(z, z
′).

Similarly for Hc|Ws, Hc|Wu. Using differentiability of Hc it’s not difficult to convince oneself that by taking
x and y sufficiently close, and by reducing R-accordingly, we can take Chol(R) as close as 1 as desired
when looking at points in the same center-stable or center-unstable leaf (recall that Ec is orthogonal to Es

and Eu). In particular one can find R0 > 0 so that Chol := Chol(R0) verifies r := λsChol < 1.
On the other hand, due to continuity of the stable and unstable holonomies (and leafwise continuity of

the metric in Wcu,Wcs) we can guarantee that: for every 0 < R ≤ R0, given ϵ > 0 there exists ζ(ϵ, R) > 0
so that

∀x, y ∈ M,d(x,W cu(y,R)) < ζ(ϵ, R) ⇒ Hs
x,y(W

cu(y,R)) ⊂ W cu(x,R+ ϵ).

Fix 0 < R ≤ R0 and let 0 < δR < R so that δR
1−r < R.

We now proceed as before: consider first the case when x = {x0, . . . , xN} is a (R, δ)-quasecenter
pseudo-orbit, where 0 < δ ≤ δR, and define the points y0, . . . , yN by

• y0 = x0

• yn = [xn, f(yn−1)] for n = 1, . . . , N.

Note that d(fx1, fy1) < λsδ. Now consider z2 = [x2, fx1] = W s(x2, clps) ∩W cu(fx1, clps): we have
d(fx1, z2) < R and d(x2, z2) < δ. By dynamical coherence it follows that

y2 = [x2, fy1] = Hc
z2,fx1

(fy1) ∴ d(z2, y2) ≤ Cholλδ = rδ

which in turn implies

d(y2, x2) = δ + rδ = δ(1 + r)

d(fy1, y2) ≤ E(R, δ)R

where E(R, δ)R is the diameter of the smallest center-unstable disk containing the stable projection of
W cu(fx1, R). As explained above, limδ→0E(R, δ) = 1.

To argue by induction, we suppose that we have proved that

d(yn, xn) = δ(1 + r + · · · rn−1)

d(fyn−1, yn) < E(R,
δ

1− r
)R.

Then
d(xn+1, yn+1) ≤ rd(yn, xn) + d(xn+1, zn+1) < δ(1 + r + · · · rn);

hence, if zn+1 = [fxn, xn+1], by hypothesis zn+1 ∈ W c(fxn, R) and thus

d(fyn, yn+1) ≤ E(R, δ(1 + r + · · · rn−1))R ≤ E(R,
δ

1− r
)R

Observe that E′(R, δ) = E(R, δ
1−r ) verifies limδ→1E

′(R, δ) = 1.
From this point on the reader shouldn’t have any difficulty to conclude what is claimed in Theorem B,

by following the same steps as in Theorem A.
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