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Abstract

In this work, the objective is to use functional analysis and harmonic analysis techniques to gener-
alize the Fourier Transform and similar tools in different contexts and levels of abstraction, thus ob-
taining a better understanding of the frequency domainworked, whatever itmay be. The first chapter
deals with Fourier Series inHilbert Spaces and Fourier Transforms inAbelian LocallyCompactTopo-
logical Groups. Fourier series in Hilbert Spaces converge to an element of the space, which is usually
interpreted as a L2 space, and, therefore, its elements are equivalence classes of functions, therefore it
makes no sense to take values in the set of measure space in which it is defined. The Fourier Trans-
forms in Groups seek precisely to solve this part of the problem, making it possible to evaluate an
element of space. Then the Theory of Distributions is developed, which allows constructions such
as the weak derivative of functions and a generalization of the Fourier transform for mathematical
objects that generalize usual functions and encompasses several useful tools such as the Dirac Delta.
Then, in the next chapter, Fourier Transforms for Temperate distributions are developed. Finally, the
Wavelet TransformTheory is developed, whose main objective is to try to circumvent the Heisenberg
uncertainty principle, obtaining a good frequency resolution for low frequencies and a good temporal
resolution for high frequencies.

iii



Contents

0 Introduction 1

1 Fourier Analysis On Hilbert Spaces And Locally Compact Abelian
Groups 6
1.1 Fourier Analysis In General Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . 6
1.2 Fourier Analysis with Haar Measure on Topological Groups . . . . . . . . . . . . 17

2 Distributions 23
2.1 Introduction andMotivation For Distributions . . . . . . . . . . . . . . . . . . 23
2.2 Test Functions, Bump Functions And The Space Of Test FunctionsD(U) . . . . 28
2.3 Notion Of Convergence And Induced Topology onD(U) . . . . . . . . . . . . 31
2.4 Distributions And The Space Of DistributionsD′(U) . . . . . . . . . . . . . . 34
2.5 Regular Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6 Compatibility BetweenD(U) andD′(U) And The Duality Pairing . . . . . . . 46
2.7 Multiplication of Smooth Functions And Test Functions . . . . . . . . . . . . . 48
2.8 Coordinate Transformations and Pullbacks . . . . . . . . . . . . . . . . . . . . 50
2.9 Derivatives Of Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.10 Mollifiers And The Density Of Regular Distributions . . . . . . . . . . . . . . . 61

3 Schwartz Space, Tempered Distributions And Fourier Transform 74
3.1 Schwartz Space And Tempered Distributions: . . . . . . . . . . . . . . . . . . . 76
3.2 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Wavelets andWavelet Transform 103
4.1 Introduction ToWavelets And The Short Time Fourier Transform . . . . . . . . 104
4.2 Applications to Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3 Background For More Rigorous Formulation Of TheWavelet Transform . . . . . 116
4.4 Shannon-Nyquist SamplingTheorem,LimitedBands andHeisenberg’sUncertainty

Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.5 Window Functions And The Short Time Fourier Transform . . . . . . . . . . . 130

iv



4.6 Continuous Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.7 Discrete Wavelet Transform And Discretization Of Continuous Wavelet Transform 134

Appendix A Riesz-Thorin’s Interpolation Theorem 138
A.1 Riesz-Thorin’s Interpolation Theorem . . . . . . . . . . . . . . . . . . . . . . . 138
A.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Appendix B Codes To Generate The Figures Presented In The Signal
Processing Subsection 145
B.1 Code For The Graphic of The Chirp Signal With High Frequency Interjections . 146
B.2 Code For The Graphics of two STFT’s and a WT of The Chirp Signal With High

Frequency Interjections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

References 151

v



Listing of figures

2.1 Heaviside’s Step Function Graphic. . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Dirac’s Delta “generalized function”. . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Function representing some density to illustrate the idea of distributions. . . . . . 26
2.4 In green, a function f representing density and, in blue, a test function ψ. Their

product fψ illustrates the idea of a “measurement” of the density at a specific local-
ization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Example of a two dimensional bump function. . . . . . . . . . . . . . . . . . . 31
2.6 Illustration of the fact that the definition of D convergence requires that the sup-

port of the test function do not get arbitrarily large in analogy with light strips in a
rainbow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Illustration of the fact that the multi derivatives of the sequences of tests functions
get arbitrarily close to the respect derivative of the limit test function. . . . . . . . 34

2.8 Change of coordinate by invertible linear map. . . . . . . . . . . . . . . . . . . . 51
2.9 Mollifiers approximating the Dirac’s Delta. . . . . . . . . . . . . . . . . . . . . 62

4.1 Two distinct signals in time that have the same Fourier Transform. In subfigure [a],
the signal is given by the superposition of all four signals that appear in the plot,
whist in subfigure [b], the signal is given by the concatenation of the four signals. . 105

4.2 Grid in time-frequency domain for the Short Time Fourier Transform. . . . . . . 107
4.3 Grid in time-frequency domain for the idea of a multiresolution analysis. . . . . . 108
4.4 Some types of real wavelets with their respective names, generated on MATLAB.

They were generated with the parameters wavefun(’morl’,8); wavefun(’mexh’,10);
wavefun(’db1’,10); wavefun(’coif4’,10); respectively . . . . . . . . . . . . . . . . 109

4.5 ComplexMorletWavelet plotted inMATLAB.The command is [psi, x]=cmorwavf(Lb,
Ub, N, fb, fc); with parameters N=1000; Lb=-8; Ub=8; fb=3; fc=1;, where “fb” is
the time-decay parameter, “fc” is the center frequency, . . . . . . . . . . . . . . . 110

4.6 Chirp signal with high frequency interjections. . . . . . . . . . . . . . . . . . . 112
4.7 Short Time Fourier Transform of the signal with window size 8. . . . . . . . . . . 113
4.8 Short Time Fourier Transform of the signal with window size 256. . . . . . . . . 114
4.9 Wavelet Transform of the signal . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.10 Filter bank for Discrete Wavelet Transform. . . . . . . . . . . . . . . . . . . . . 136

vi



This is dedicated to my parents, Frederico andOriana.

vii



Acknowledgments

I would like to thank every one that supported me on my educational journey, but that would be
virtually impossible given that so many people I have met in this years taught me something.

Therefore, I first should thank my family for the entire support I have received along all my live,
providing not only the best conditions possible for me to study, but contributing to me in every way
they could.

In the department of mathematics, I should thank mainly three professors: Sylvie Marie Oliffson
Kamphorst Leal da Silva, Sônia Pinto de Carvalho and Pablo Daniel Carrasco Correa. Sylvie was
the first one to welcome me to work in the department of mathematics back when I was taking the
first Calculus course at the University. From that moment on I have dedicated a good part of my time
taking courses at the department ofmathematics andmeetmany professors that helpedme and taught
me a lot. Everything started there and I will always be grateful for that opportunity. Sônia after that
also started giving me support and helping me whenever I needed, and I needed a lot. Three years of
my introductions to scientific research at the University were with Sylvie and Sônia, providing me a
good introduction tomany subjects that I did not even knew the existence of and that ended up being
extremely important in my formation. Pablo also gave me a lot of support during these years since I
took a firs course in Dynamical Systems at the second semester. Pablo is also the advisor of this thesis
and a person whom, without the support, this text would not exist.

In the department of Electrical and Eletronic Engineering, I also would like to acknowledge three
professors: Luciano Antonio Frezzatto Santos, Eduardo Mazoni Andrade Marçal Mendes and Lu-
ciano Cunha de Araújo Pimenta. Luciano Frezzatto is the co-advisor of this thesis and helped me
a lot with useful suggestions and insights. also making a detailed review of this text. Eduardo also
helped me with good suggestions and pointing out some mistakes I made along the way. Luciano
Pimenta gave me the support at the end of my bachelors course when I decided to take the Robotics’s
certificate. He never held me back from taking the classes I was most interested of and that made a
huge difference for me.

Finally, I would like to thank two ofmy friends and colleagues, who reviewed some parts ofmy text
and helped me at specific points of the discussion: Renzo Scarpelli Cabral de Bragança and Gabriel
Teixeira Lara Chaves.

viii



It is not knowledge, but the act of learning, not possession,

but the act of getting there, which grants the greatest enjoy-

ment.

Carl Friedrich Gauss

0
Introduction

In this text, the main focus is to provide an introduction to some methods in Harmonic and Func-

tional Analysis to study FrequencyDomains using Fourier Transforms. This will be done in different

levels of abstraction and in various distinct contexts.

It is important to formalize the study of these tools and the correlation between them since the

Fourier Analysis revolutionized numerous areas in sciences, mathematics and engineering. It would

be virtually impossible to condense all the important results developed since the beginning of this
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study with Jean-Baptiste Joseph Fourier (1768 – 1830). This texts intends, therefore, to present four

different views of this theory accordingly to the contemporary mathematics and the more sophisti-

cated analysis that refined this theory. Some examples and context explanations will be done both in

subjects more strictly related to pure mathematics and also in subjects concerning electrical engineer-

ing.

This text is divided in four chapters, however, there will be presented essentially four different

Fourier Analysis, two of them in Chapter 1, whilst Chapters 2 and 3 present another, and, finally,

Chapter 4 presents the last one.

Chapter 1 starts presenting a topic in Functional Analysis concerning Fourier Series in Hilbert

Spaces. Although Hilbert Spaces are already a restricted class of vector spaces, this is still way more

general and abstract then the Fourier Transform. This starts with some simple facts such as proving

that (assuming theAxiomofChoice or Zorn’s Lemma) that everyHilbert Space has a very special type

of basis that is called aHilbert basis. With these basis, some of themost natural intuitions that holds in

finite dimensional linear spaces still remain true in these more general, possibly infinite dimensional,

linear spaces. For example, an orthonormal set will be a basis if, and only if, the Perp Set contains only

the zero vector.

After the basic definitions, the Fourier Series arises and are defined for every orthonormal subset

A = {eα}α∈J in a Hilbert SpaceH . In particular, if this set is a Hilbert basis, the Fourier Series con-

verges to some element of theHilbert space. However, a important Theorem, called the Riesz-Fischer

Theorem, will show that every Hilbert space is an ℓ2 space. And indeed, the Hilbert Spaces are in-

terpreted this way, i.e., generally in many contexts of analysis, the working space is an L2, and thus

consisting of equivalence classes of functions. Therefore, it does not make sense to evaluate some ele-

ment of the space in a class of functions. To remedy a bit of this situation, a theory concerning Fourier

Analysis on groups is a abstract harmonic analysis that provides conditions and interesting results for

the Fourier Theory work in much more generality and for one to have a continuous representative in
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which elements of the space can in fact be evaluated.

Chapter 2 will be dedicated to construct a introduction to the theory of Distributions, which are

mathematical objects that describe “generalized functions” such as the Dirac’s Delta, widely used in

mathematics, physics, engineering and co-related areas. This objects will be linear functionals defined

on a spaceD that forms the class of test function C∞
c , and will form a spaceD′. Many examples are

given to motivate this theory. After that, many important topics such as the regular distributions, the

duality pairing, pullbacks, etc. Density results are proved and discussed such as the density of D in

Lp and the density of the distributions induced by functions inD in the spaceD′. At the end of the

Chapter, other tools that are developed such as the derivatives of distributions and the construction

of mollifiers that will help in the proof of the density of regular distributions.

In Chapter 3 the development of the theory of distributions continues. However, now another

type of distributions and test functions are defined: the test functions of slow growth, forming the

spaceS, and the tempered distributions, forming the space §′. This is done because the Fourier Trans-

form can not be defined on all spaceD. Functions of slow growth generalize the usual test functions,

and thus, the continuous linear functionals on §will also be continuous linear functionals inD, i.e.,

S′ ⊆ D′. Then, the theory of Fourier Transforms is defined in the spaces L1, L2 and S. All of them

are compared and co-related in the text. At the end, an ingenious Theorem, called the Riesz-Thorin’s

Interpolation, is proved and used to develop the theory of Fourier Transforms in Lp for all 1 ≤ p ≤ 2

and to prove useful inequalities such as the Hausdorff Young Inequality and Young’s Inequality.

Chapter 4 starts with a problem intrinsic to the Fourier Transform: the trade-off between time

resolution and frequency resolution. To try to solve this problem, the first tool presented was the

Short Time Fourier Transforms (STFT), win which one dives the space into small intervals and does

the Fourier Transform as each one. However, this does not solve the problem completely, as one still

has, it the time-frequency domain, time intervals for frequency intervals. Moreover, it turns out that a

function f and its Fourier Transform f̂ = F [f] can not be both compactly supported and, more over,
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there is a strong result, called the Heisenberg’s Incertainty Priciple that says that the product of the

variances of the function and its Fourirer Transform is lowerbounded, and, therefore, it is impossible

to increase time resolution without decreasing frequency resolution. The strategy then, was to use

multiple time-frequencies resolutions to analyse a signal, varying from parts with bad time resolution

and good frequency resolution and parts with good time resolution and bad frequency resolution.

Thiswill be done instead of using cosines and sine, using so calledwavelets, which in essence are “small

waves” with finite spectral power. There will be a mother wavelet ψ from which all others

ψa,b =
1
√
a
ψ

(
t − b
a

)
.

in a family of wavelets will be generating using two parameters, one for scale a other for translation.

This is very useful in engineering for example because, in numerous areas as signal processing, telecom-

munications and control, one may wish to obtain as much information as possible of the analysis

of a signal, and then would seek for high frequency burst in a signal which usually occurs at short

time intervals, but also wish to obtain good frequency resolution in other time intervals of the signal.

Therefore, a Wavelet Transform

Wψ [f] (a, b) =
∫
R

f(t) · ψ∗a,b(t) dt,

will be defined and formalized in the resemblance of the Fourier Transform. In this chapter, a specific

sectionwill be dedicated to apply this theory to analyse a chirp signalwithhigh frequency interjections.

It is also important to say that some parts of the theory developed in this text may seem repetitive.

This will sometimes happen because indeed many of the results are the same but in different contexts

and concerning distinct mathematical objects even though the idea is the same. Another reason for

this to be the case is that, intentionally in order to give more independence between the chapters,
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some results are reinforced and recapitulated when necessary. This will be the case, for example, at the

beginning of the Chapter 4, when some results about Hilbert and Banach Spaces are presented again

to support the necessary theory in this chapter.
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Nobody ever figures out what life is all about, and it doesn’t

matter. Explore the world. Nearly everything is really in-

teresting if you go into it deeply enough.

Richard Feynman

1
Fourier Analysis OnHilbert Spaces And

Locally Compact Abelian Groups

1.1 Fourier Analysis In General Hilbert Spaces

Many of the results given in this section can be found in [3].

Recall that a Hilbert Space is a inner product vector space that is a complete metric space with
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respect to the distance defined by the inner product. That being said, one basic construction is to

formulate the notion of a basis for these spaces.

Definition 1. LetH be a inner product space and A ⊂ H such that for every u, v ∈ A with u ≠ v,

⟨u, u⟩ = 1 and ⟨u, v⟩ = 0. Then A is said to be a orthonormal subset ofH .

With the definition above it is possible to make a precise definition of a special set of elements that

form a basis forH .

Definition 2. AHilbert Basis is a orthonormal subset β ofH such that span(β) = H .

It is not entirely obvious that every Hilbert space has a Hilbert basis. Nonetheless, that is indeed

the case. However, an important fact about Hilbert Spaces will be required to prove this fact: the

existence of the orthogonal complement. This existence is a direct consequence of the following lemma:

Lemma 1. Let C ⊂ H be a nonempty closed convex subset, i.e., C = C and for every pair of elements

c1, c2 ∈ C, the line segment x1x2 connecting x1 to x2 is in C. Then, given x ∉ C, there exists a unique

element y ∈ C such that x − y ⊥ C and d(x, y) = d(x,C).

Proof. Without loss of generality, it can be assumed that x = 0, since translation is an isometry.

Hence, x ∉ C =⇒ α := d(x,C) > 0. Take a sequence of elements (yn)n∈Z+ ⊆ C such that

d(x, yn)
n−→∞−−−−−→ α. The claim is that (yn) is a Cauchy sequence. In fact, sinceH is an inner product

space, the parallelogram law holds:

∥a − b∥2 + ∥a + b∥2 = 2(∥a∥2 + ∥b∥2).

Given then yn, ym define z = (yn + ym)/2. Since C is convex, z ∈ C. Therefore:

yn − ym
2

2 = yn2
2

+
ym2
2

−
yn + ym

2

2 n,m−→∞−−−−−−−→ 0,
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because

yn2
2

n−→∞−−−−−→ α2

2
,

ym2
2

m−→∞−−−−−→ α2

2
and

yn + ym
2

2 is a number greater or equal to α2.

Hence the existence of y ∈ C such that d(x, y) = d(x,C) is proved. To show that y is unique, suppose

that there exists y′ ≠ y satisfying the same conditions. Then:

y − y′

2

2 = y2
2

+
y′2
2

−
y + y′

2

2 ≤ 0,

due to a similar argument as the one in the previous parallelogram inequality. Therefore, y = y′, a

contradiction. The fact that y − y ⊥ C is a direct consequence of Pythagoras’s Theorem. □

Corollary 1. Given a closed subspace C ⊆ H , there exists another closed subspace C⊥ such that C ⊕ C⊥.

The set C⊥ is known as theOrthogonal Complement of C.

Proof. Straightforward from Lemma 1. □

Proposition 1. Every Hilbert spaceH has a Hilbert basis.

Proof. Let F be the family of all orthonormal subsets ofH endowed with the partial order of inclu-

sion, considering, for F1, F2 ∈ F :

F1 ≤ F2 ⇐⇒ F1 ⊆ F2.

For a given totally ordered chain {Fi}i∈I inF , it is clear that∪i∈IFi is an upper bound inF for {Fi}i∈I.

From Zorn’s Lemma, there is a maximal elementM ⊆ H such thatM is orthonormal.

If span(M) = H , the result is proven. Otherwise, suppose span(M) ≠ H . Then

H = span(M) ⊕ span(M)⊥.

8



If there exists u ∈ span(M)⊥ with ∥u∥ = 1, then

M ∪ {u} ⊋M =⇒ M ∪ {u} > M,

contradicting the fact thatM is maximal. □

An equivalent verifying that a subset is a Hilbert basis is given by the following result:

Proposition 2. Let β be an orthonormal subset ofH . The following claims are equivalent:

1. β is a Hilbert Basis forH .

2. β⊥ = {0}.

Proof. (1) =⇒ (2) : Let v ∈ H and ε > 0. By Proposition 1, there is a Hilbert basis β = {eλ | λ ∈

Λ} forH . Therefore, for some finite subset {eλj | λj ∈ Λ , j ∈ {1, . . . ,m}} of span() it is possible

to write x − m∑
i=1

aλjeλj

 < ε.

If x ∈ β⊥, then, without loss of generality supposing ε < 1:

ε >

x − m∑
j=1

aαjeαj


2
★
= ∥x∥2 +

 m∑
j=1

aαjeαj


2

≥ ∥x∥2,

where (★) is valid because x ∈ β⊥. Thus, ∥x∥ < ε for every ε > 0, implying that x = 0.

(2) =⇒ (1) :LetM = span(β) andwriteH = M⊕M⊥. Assuming condition (2),M⊥ ⊆ β⊥ =

{0} and {0} ∈ M⊥. Hence,M⊥ = {0}, implying thatH = M, i.e., β is a Hilbert basis. □

Recall that for a summation over an uncountable index set, we define the sum as being the suprema

9



as the sum runs over all finite subset of indexes. More precisely, if J is an uncountable index set, then

∑
α∈J

aα = sup


∑

αf∈F⊂J
aαf : |F | < ℵ0


In order to define the notion of Fourier Series with respect to an orthonormal subset of H , it’s

useful to have the following result:

Proposition 3 (Bessel’s Inequality). Let A = {eα | α ∈ J} an orthonormal subset ofH . Then, for every

x ∈ H : ∑
α ∈ J

|⟨x, eα⟩|2 ≤ ∥x∥2.

In particular, ⟨x, eα⟩ ≠ 0 for only a countable subset Jx ⊂ J (for each x).

Proof. Fix a countable subset F = {eαf}f∈N of the index set J. Given any x ∈ H , then

ym := x − ©«
m∑
f=1

⟨x, eαfeαf⟩
ª®¬ ,

is such that ym ⊥ eαf for all f ∈ {1, . . . ,m}. Thus,

∥x∥2 =
ym2 +  m∑

f=1
⟨x, eαf⟩eαf


2

=
ym2 + m∑

f=1
|⟨x, eαf⟩|2 ≥

m∑
f=1

|⟨x, eαf⟩|2.

Therefore, for any finite subset of indexes of F,

∥x∥2 ≥
m∑
f=1

|⟨x, eαf⟩|2,

Since F is countable, then ∑
αf∈F

|⟨x, eαf⟩|2 ≤ ∥x∥2. (★)
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So, for a given x ∈ H , define

Fm =

{
αf ∈ F : |⟨x, eαf⟩| ≥

1
m

}
.

By the relation in (★), |Fm | < ℵ0 for allm ∈ N. Therefore,

⋃
m∈N

Fm =
{
αf ∈ F : ⟨x, eαf⟩ ≠ 0

}
,

is countable as countable union of finite sets. □

Now it is possible to define, in a formal way at first, the Fourier Series:

Definition 3. Let A = {eα}α∈J be a orthonormal subset in a Hilbert space H . The set {⟨x, eα}α∈J is

called the set of Fourier Coefficients of x ∈ H . Furthermore, the series

∑
α∈J

⟨x, eα⟩eα,

is called the Fourier Series of x with respect to A.

Theorem 1. Let β = {eα}α∈J be a orthonormal subset ofH . Then, the following statements are equiva-

lent:

1. β is a Hilbert basis forH .

2. ∀x ∈ H ,
∑

α∈J⟨x, eα⟩eα. (Fourier Series converges for all x ∈ H )

3. ∀x ∈ H , ∥x∥2 = ∑
α∈J |⟨x, eα⟩|2. (Parseval’s Identity)

Proof. Given any x ∈ H , by Proposition 3, ⟨x, eα⟩ ≠ 0 only for a countable subset of the index set

S ⊂ F. Then, because |F| ≤ ℵ0, either F is finite or F � N. Suppose, without loss of generality, F = N.

11



(1) =⇒ (2) : By Bessel’s inequality,∑j∈S |⟨x, ej⟩|2 converges. The claim here is that
∑

j∈S⟨x, ej⟩ej

converges inH .

If |S| < ℵ0, this fact is trivial. Suppose then that |S| = ℵ0. Then, form ≥ n

 m∑
j=n

⟨x, ej⟩ej


2

=
m∑
j=n

|⟨x, ej⟩|2
m,n−→∞−−−−−−−→ 0.

Thus, Sn =
∑n

j=1⟨x, ej⟩ej is Cauchy and therefore converges asH is a Hilbert space and is complete by

definition.

Hence, 

〈∑
j∈S

⟨x, ej⟩ej, ek

〉
= ⟨x, ek⟩, ∀k ∈ S

〈∑
j∈S

⟨x, ej⟩ej, eα

〉
= 0, ∀k ∉ S.

If y = x − ∑
j∈S⟨x, ej⟩ej, then

⟨y, eα⟩ =

0, if α ∈ S,

⟨x, eα⟩, if α ∉ S.

However, only the elements of S satisfy ⟨x, eα⟩ ≠ 0. Thus ⟨y, eα = 0∀α ∈ J. Therefore, y ∈ β⊥ = {0},

because β is a Hilbert basis. Finally, one can conclude that

x =
∑
j∈S

⟨x, ej⟩ej.
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(2) =⇒ (3) : If |S| < ℵ0, this fact is straightforward. If |S| = ℵ0, thenx − m∑
j=1

⟨x, ej⟩ej


2

︸                ︷︷                ︸
m−→∞−−−−−→0

= ∥x∥2 −2ℜ𝔢
©«
〈
x,

m∑
j=1

⟨x, ej⟩ej

〉ª®¬︸                        ︷︷                        ︸
−2∑m

j=1 | ⟨x,ej ⟩ |2

+

 n∑
j=1

⟨x, ej⟩ej


2

︸          ︷︷          ︸∑m
j=1 | ⟨x,ej ⟩ |2

.

Therefore,

∥x∥2 −
m∑
j=1

|⟨x, ej⟩|2 −→ 0,

i.e.,

∥x∥2 =
∑
j∈S

|⟨x, ej⟩|2.

(3) =⇒ (1) : Let x ∈ β. Then, ⟨x, eα⟩ for all α ∈ J, and, assuming (3), ∥x∥ = 0 =⇒ x = 0.

Thus, β⊥ = {0} and hence β is a Hilbert basis. □

Definition 4. A surjective map H → H1 = U(H), where H and H1 are Hilbert spaces is said to

be unitary if it is linear and ⟨U(x),U(y)⟩H1 = ⟨x, y⟩H for all x, y ∈ H . In particular, ∥x∥H =

∥U(x)∥H1 .

Definition 5. Let J be an index set. Define the set ℓ2(J) as

ℓ2(J) =
{
x = (xα)α∈J, xα ∈ K :

∑
α∈J

|xα |2 < ∞
}
,

whereK = R orK = C.

Observation 1. In the next Theorem the space ℓ is defined just as the space L but assuming the counting

measure and the sigma algebra of parts.

Theorem 2 (Riesz-Fisher). LetH be an infinite-dimensional Hilbert space. Then, there exists a set J

and a unitary operator U : H → ℓ2(J) = U(H).

13



In particular, if |J| > ℵ0, then x ∈ ℓ2(J) =⇒ xα ≠ 0 only for a countable subset of indexes.

Proof. The idea for proving that is the same as what was done for proving Bessel’s Inequality.

Indeed, take a Hilbert basis β = {eα}α∈J forH and define:

U :H → ℓ2(J)

x ↦→ (⟨x, eα⟩)α∈J .

As defined,U is linear and a isometry (Parseval’s Identity) and thereforeU is unitary due to the Polar-

ization Identity. It suffices to show thatU(H) = ℓ2(J).

Let y ∈ ℓ2(J). Then Jr = {α ∈ J : yα ≠ 0} by the what was said previous to the theorem. Define

∑
j∈Jr

y jej.

Therefore, this series converges in H . Indeed, taking the partial sums, that is limited by
y2, and

hence the series converges as monotone limited sequence.

Define

x =
∑
j∈Jr

yj ej.

Thus, for every w ∈ H ,

⟨x,w⟩ =
〈∑
j∈Jr

y jej,w

〉
=

∑
j∈Jr

yj ⟨ej,w⟩.

Therefore, for w = eα,

⟨x, eα⟩ = yα ⇐⇒ U(x) = y.

□

Corollary 2. LetH be a Hilbert space and A = {xα}α∈J be a orthonormal subset ofH (not necessarily

14



a basis). LetH0 = span(A) (a closed subspace ofH by definition) and Π : H → H0 the orthogonal

projection inH0. Then

Π(x) =
∑
α∈J

⟨x, xα⟩xα.

Proof. Since H0 is a Hilbert space, there must exists a map U : H0 → ℓ2(J) that is surjective and

unitary. Given any x ∈ H,

Π(x) ∈ H0 =⇒ Π(x) = U−1(y) =
∑
α∈J

yαxα,

where y = (yα)α∈J ∈ ℓ2(J). Furthermore, yα = ⟨Π(x), xα⟩. Note that x = Π(x) + Π⊥(x) and

⟨Π⊥(x), xα⟩ = 0 for all α. Hence, ⟨x, xα⟩ = ⟨Π(x), xα⟩ in a way that

Π(x) =
∑
α∈J

⟨x, xα⟩xα.

□

The following result is extremely useful and characterizes an important class of Hilbert spaces in

which many theories takes places.

Theorem 3. LetH be a Hilbert space. The following statements are equivalent:

1. H is separable.

2. Every Hilbert basis forH is countable.

3. There exists a surjective unitary operator U : H → ℓ2(N) if dim(H) ≥ ℵ0 or U : H → Rm

if dim(H) < ℵ0.

Proof.

(2) =⇒ (3) : It is an immediate consequence of Theorem 2.
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(3) =⇒ (1) : This fact is also straightforward because U is unitary and both ℓ2(N) and Rm are

separable.

(1) =⇒ (2) : Let β ⊆ H be a Hilbert basis forH . Hence, β is separable, sinceH is separable.

Let α ⊆ β be a dense countable subset with β ⊆ α. The claim is that α = β. Indeed, suppose that this

is not true, i.e., α ⊊ β, and let b ∈ β such that b ∉ α. Therefore, for all a ∈ α ⊊ β:

∥a − b∥2 = ∥a∥2 + ∥b∥2 = 2,

since β is orthonormal. Hence, b ∉ α, a contradiction.

Hence, α = β, and β is a countable dense subset. □

One of themain problems in dealingwith Fourier analysis on generalHilbert spaces is the fact that,

most of the times, the space that is concerned is an L2 space, i.e., an space of equivalent classes. It is

a standard result in measure theory that every Lp(X,X, μ) space for p ≥ 1 is complete an thus is a

Banach space. The proof of this fact can be found in [2]. However, in fact, every Hilbert space is

equivalent to an L2 space:

Corollary 3. Every Hilbert Space is isomorphic to an L2(X,X, μ) space.

Proof. This is a consequence of the Riesz-Fischer Theorem.

□

Tofinish this section, it is important to discuss the concern in the discussion in dealingwithHilbert

space introduced earlier.

As said before, usually the Hilbert space is actually a quotient set of equivalence classes of the

Lebesgue square integrable functions. Therefore, the convergence of the Fourier Series is inL2, i.e., in

the normL2. Hence, it does notmake any sense to evaluate the element that results of the convergence
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in the Fourier series of the function in the space L2(X,X, μ) in an element of the space X as its value

its not defined in every point and the elements of the equivalence class only being equal μ − a.e.

For one to be able to require a convergence and a possible evaluation at a element of the space, new

methods and assumptions are required in a new approach to the problem. This will be discussed in

the next section.

1.2 Fourier Analysis withHaarMeasure on Topological Groups

LetL2(X,X, μ) = H be aHilbert space. Here, the separability of the space is a desirable property and

that is not always the case. For that to be assured, some properties must be satisfied such as requiring

that the space is regular and the Lebesgue σ-algebra is taken.

Suppose that H is separable. Then, by Theorem 3 there exists a countable orthonormal basis

{en}n∈N. Thus, if f ∈ L2(X,X, μ):

f =
∑
n∈N

〈
f, en

〉
.

It is important to reinforce that here f is not a function but an equivalent class of functions, the same

being valid for each en.

Consider the circle T = S1 = R/Z and the set of functions {en}n∈Z such that:

en :[0, 1) → S1

t ↦→ eint.

Then {en} (here again considering equivalent classes) forms an orthonormal basis for L2(T). In fact,

there are infinitely many basis for L2(T), but this one is special in many ways that will soon be clear.

Definition 6. ATopological Group is a topological space G that is also a group and such that the group

operation and the inversion map (that takes each g to its inverse g−1) are continuous.
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Definition 7. LetG be a topological group that is abelian, locally compactHausdorff space. A character

is a continuous morphism.

The idea here is analogous to the idea of a dual space of a vector space V∗ = {T : V → K |

T linear}, for which, in the context of functional analysis, one usually requires the maps to be con-

tinuous.

The choice for the group S1 is due to the fact that S1 has one of the most simple group structures

appropriated for this context. Indeed, S1 has dimension 1 and is compact in its natural topology (the

quotient topology), while the real lineR is not compact.

Definition 8. Let G be a topological group that is abelian, locally compact Hausdorff space. Define the

dual group with respect to S1 as being the set Ĝ such that

Ĝ = {ξ : ξ is a character of G}.

The reader is encouraged to try to proof the following example

Example 1. T̂ � Z. More precisely, if ξ : T→ S1 is a character, then ξ = en for some n ∈ Z.

Indeed, a more general result than the one given in Example 1 above is that ifG is a compact Haus-

dorff group, then the dual group Ĝ is discrete. Moreover, in this case of G Hausdorff compact, the

dual group Ĝ will be countable if and only if G is second countable (and, since G is Hausdorff, will

also be metrizable).

Example 2. It is interesting to note that not every discrete dual group is countable. In fact, there exists

uncountable discrete groups as well as there are non-metrizable compact groups. For example, letΛ be an

uncountable set and consider the “Tubby-Torus” group:

G = TΛ
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Consider the usual topology and the usual group structure on T. Define the topology on G as the product

topology and the group structure as the canonical product group. Then the dual group can be written as

Ĝ =
⊕
λ∈Λ

,

an uncountable direct sum, as a discrete group. The converse can also be done, i.e., given any uncountable

discrete group H, then Ĥ is a non-metrizable compact group.

In the next part is useful to recall the following definition.

Definition 9. Let (X, τ) be a topological space and (X,X, μ) ameasure space. Then (X, τ,X, μ) is said

to be a topological measure space. Furthermore, a measurable subset A of X is said to be inner regular

if

μ(A) = sup
{
μ(K) : K ⊆ A is compact

}
,

and μ(K) < ∞ for all compact sets K.

In a similar way, A is said to be outer regular if

μ(A) = inf
{
μ(G) : G ⊇ A is open

}
,

and μ(K) < ∞ for all compact sets K.

Ameasure is called inner regular if every measurable set is inner regular (although in some text, the

authors require that only that every open measurable set is inner regular). The measure is called outer

regular if every measurable set is outer regular. A measure is called regular if it is both outer regular

and inner regular.

The followingmeasure construction plays a central role in this approach to amore abstract Fourier

Analysis.
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Theorem 4. Let G be a topological group that is abelian, locally compact Hausdorff space. Then there

exists a measure μG on the Borel subsets of G that is both regular and translational invariant, i.e.,

considering Lg : G → G, x ↦→ xg, then

Lg∗μG = μG,

where ∗ denotes the pushforward of the measure.

Furthermore, given another regular measure μ satisfying the above conditions, they are equal up to a

constant factor (i.e., μ = λμG for some constant λ and every μ).

Definition 10 (Haar Measure). The measure described in Theorem 4 is called aHaarMeasure.

Example 3. The Lebesgue measure λ is a Haar measure. The same could be said to 2λ.

LetG be compact (not only locally) and fix a Haar measure μG. Considering L
2(G), then {ξ ∈ Ĝ}

is an orthonormal basis L2(G) (see [9]). This compact requirement is important otherwise functions

like 1G would not be integrable.

It is often convenient to take theHaarProbabilitywhen themeasure is finite, uniquely determined

taking

PG =
μG

μG(G)
.

For a Fourier Series

f =
∑
n∈Z

anen,

this equality holds in L2 spaces, which are Hilbert spaces.

It is easy to prove that two separable Hilbert spaces are isomorphic.

Nonetheless, more properties are require for the theory to be consistent. Remember that it does

not make sense to evaluate an element of L2 as it is equivalent class of functions.
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In fact, two facts are usually assumed in this type of analysis tomake the evaluation of the function

possible in some sense. First, one desirable property of the spacewouldbe tohave the set of continuous

functions dense in the space and such that every element of the Lp space considered has only one

continuous representative in each equivalent class. The other property is that themeasure of the space

is positive in open sets in a sense that will be made precise in the following definition.

Definition 11. Ameasure is said to have total support if every open set has positive measure.

It is important in this context for themeasure to be positive in open sets. That because if a function

h is continuous and 
h ≥ 0,∫
X
h dμ

then hwill in fact identically 0 and not just 0 almost everywhere.

In fact, let U be an open set. Then μ(U) > 0, and, considering h a non negative measurable

function: ∫
U
h dμ ≤

∫
X
h dμ ≡ 0,

and thus, since h is continuous, if h(x) > 0 for some x ∈ X, then h > 0 in Br(x) for some r > 0 and

the integral inUwould be necessarily positive, an absurd.

Now, more conditions are required to evaluate the function representative of the class and require

the convergence everywhere (not only almost everywhere), which is a stronger convergence condition.

In fact, if f is differentiable, then the series will in indeed converge.

Definition 12. Let G be a locally compact abelian group and λG a Haar measure in G. Then, the

Fourier Transform of a function F : G −→ C is defined as being the function F̂ : Ĝ −→ C given by

F̂(ξ) =
∫
G
Fξ dλG =

∫
g∈G

F(g)ξ(g) dλG(g).
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Moreover, thinking about the Fourier Series of a periodic functions in terms of its characters, the

Fourier Coefficients are precisely the transforms:

f ∼
∑
n∈Z

anen =⇒ an = f(ω) =
∫

f(t) · e−iωt︸︷︷︸
characters

dt, (ω ∈ R).
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Mathematics is a game played according to certain simple

rules with meaningless marks on paper.

David Hilbert

2
Distributions

2.1 Introduction andMotivation For Distributions

In the general context of real analysis, some concepts arises as founding blocks to the theory, such

as the notions of functions (here in the naive set theory approach), limits, derivatives and so forth.

However, in some other fields of mathematics, such as the study of differential equations and Fourier

Transforms, and also in engineering, in areas such as signal processing, telecommunications and clas-
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sical theory of control, some interesting solutions to many problems are functions with sharp turns

or, in a more critical scenario, not functions in the usual way of the definition.

The idea of the concept of some “generalized functions” has its motivations in trying to define

derivatives everywhere for functions that are not differentiable in the usual sense.

Example 4. Consider the Heaviside Step Function u : R→ R defined as

u(x) =

1, if x ≥ 0;

0, if x < 0.

Clearly, observing the graph of u in Figure 2.1, it is obvious that u does not have a derivative at 0.

u(x)

x

1

Figure 2.1: Heaviside’s Step Function Graphic.

Therefore, in the usual approach, it is not possible to define a derivative u′ on all the real line.

The idea of trying to elaborate a “function” that would be the derivative u′ lead to the formulation of

the Dirac’s Delta Function δ (which is not a function).

Since u is constant on both R∗+ and R∗− , it is clear that this new “function” must satisfy δ(x) = 0 for

every x ≠ 0. Nonetheless, it is desirable that the F.T.C. still holds in some sense. More precisely, for every

ε > 0, it is wanted that

∫ ε

−ε
δ(x) dx =

∫ ε

−ε
u′(x) dx = u(ε) − u(−ε) = 1∀ ε > 0.
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Hence, the δ can be described imposing the following two properties:


δ(x) = 0 for all x ≠ 0;∫ ε

−ε
δ(x) dx = 1∀ ε > 0.

This “generalized function” would look something like what is shown in Figure 2.2 onward, where the

arrow represents the fact that the amplitude of δ in 0 should be infinite:

δ(x)

x

Figure 2.2: Dirac’s Delta “generalized function”.

The amplitude of the Delta is infinite at 0, however, its weight is said to be equal to 1 as the integral is

required to be finite and equal to 1.

Therefore, it is evident that δ can not be a function in the usual sense. To be entirely clear, however, the

first requirement says that δ is 0 almost everywhere. Considering the Lebesgue measure onR, this means

that: ∫
U

δ dλ = 0,

for every measurable U ⊆ R, which contradicts the second requirement.

The Dirac’s Delta can also be defined inRn as the product of n Deltas, i.e., if x = (x1, . . . , xn) ∈ Rn,

then

δ(x) = δ(x1) · · · δ(xn).
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To finish this example, the case gets even worse when there were attempts to define the higher order

derivatives such as δ′, δ′′, and so forth.

The goal thenwas to define those “generalized functions” in amore precise way and give ameaning

to these derivatives. Motivated by problems as the ones in Example 4, the concept of a new mathe-

matical object was created, theDistributions. Latter, Dirac’s Delta Function will be defined as a Dis-

tribution.

The general idea for the concept of distributions that will be defined later is to think about it as

densities. For example, when dealing with theses densities in the context of generalizing real-valued

functions of one real variable, these distributions could represent the linear mass density of a one

dimensional model of a bar. In the case of the Delta function, the density would be a singular density

as all the mass is concentrated in one point. This is illustrated for a function f : R→ R in Figure 2.3

ahead.

fff

Figure 2.3: Function representing some density to illustrate the idea of distributions.

In experimental physics or engineering, a measurement device would be used to measure the den-

sity. In pure mathematics as is this context, the analogue of the measurement devices are the so called

Test Functions.
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Test Functions will be precisely defined later on with the rest of the theory presented. However,

for now, the important think is to capture the idea of the roles these functions play. These functions

should be well behaved in some sense, so properties like continuity and “localization” (in a sense that

will be defined) are required.

In the context of the example given before of a function f : R → R, the test functions will also

have domain and codomain in R, being functions of the form ψ : R → R that are zero outside a

finite interval and be, for example, in the form of a hump inside this finite interval. This is illustrated

in Figure 2.8 ahead.

fffψ

Figure 2.4: In green, a function f representing density and, in blue, a test function ψ. Their product fψ illustrates the idea
of a “measurement” of the density at a specific localization.

The measurement itself will be made by taking the integral of the product of this two functions.

In the real case discussed: ∫
R

fψ dλ ∈ R.

The idea is to use many bumps to extract information from the function. In fact, given a function f,

one could define a map

ψ ↦→
∫
R

fψ dλ ∈ R,
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that takes test functions and associate to real numbers representing the value of the measurement.

The function f will be later on “substituted” and viewed as this map. This idea already resembles

a lot of the concept of a functional on a dual space and the vision of a certain correspondence of a

function and a functional, such as in the Riesz-Frechet Representation Theorem.

Some advantages in dealing with this map instead of trying to deal with the usual notion of a func-

tion can be viewed in the case of the Delta Function. In this case, the measurement will return:

ψ ↦→
∫
R

δψ dλ = ψ(0),

which is the value of the test function at zero. Translations of the Delta could be considered to return

the value of the test function at any point. This property of the Delta Function is known as the

Sampling Property.

So, the central idea here is that functions are thought of as acting in the points of its domain and

assigning values in its codomain. In distribution theory, there is a reinterpretation where entities like

a function are thought of acting on test functions in a certain way.

2.2 TestFunctions, BumpFunctionsAndTheSpaceOfTestFunctionsD(U)

Let henceforth in this sectionMn denote an n-dimensional manifold,U ⊆ Mn an open subset andK

the fieldR orC. Here we firstly recall some basic notations:

Notation 1. In this Section, the following notations will be fixed:

1. C(U) = C0(U) := {f : U → K : f is continuous}. The set C(Mn) will simply be denoted by

C.

2. For every k ∈ Z+, Ck(U) := {f : U → K : f is k- times continuously differentiable}. The set

Ck(Mn) will simply be denoted by Ck.
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3. C∞(U) := ⋂
k∈Z+

Ck(U) = {f : U → K : f is k- times continuously differentiable for every k ∈ Z}.

This is the set of smooth functions on U. The set C∞(Mn) will simply be denoted by C∞.

4. A sub-index notation with a c symbol will be used to denote the restriction of some space to the

functions of topological compact support. For example, Ck
c (U) will denote the k- times continu-

ously differentiable with compact support.

The following definition will be very useful to make the notations a little bit shorter and some

results more easier to state.

Definition 13. A multi-index of size n is an element of (Z+)n. The length of a multi-index α =

(α1, . . . , αn) ∈ (Z+)n is the scalar |α| := α1 + · · · + αn. This definition can be use to make other

definitions and notations more easily to deal with in the context of several variables. In particular, the

following will be stated:

1. xα = xα11 · · · xαnn ;

2. 𝜕α =
𝜕 |α |

𝜕xα11 · · · 𝜕xαnn
.

3. (Z+)n can be endowedwith a partial orderwere α ≥ β if and only if αi ≥ βi for all i ∈ {1, ..., n}.

When α ≥ β, a multi-index binomial coefficient can be defined as

(
α
β

)
:=

(
α1
β1

)
· · ·

(
αn
βn

)
.

With multi-index notation, it is clear that φ ∈ C∞(U) if and only if 𝜕αφ ∈ C(U) for every multi-

index α.

The considerations of the test functions in the previous section required some kind of continuity

and “localization”. With the previous definitions and notations it is possible to define in a precise

manner the Space of Test Functions.
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Definition 14. Let U ⊆ Mn be an open set. The Space of Test Functions on U is the set (indeed a

K-vector space)D(U) := C∞
c (U) of all arbitrarily often continuously differentiable ψ : U → K with

compact support.

The claim made in the previous definition is straightforward.

Proposition 4. D(U) is aK-vector space.

Proof. The proof is trivial asMn is a metric space so compact sets are closed and bounded. The group

operations are defined pointwise in the obvious way so that, given φ, ψ ∈ D(U), (ψ + φ)(x) :=

ψ(x) + φ(x) for all x ∈ U. In fact (ψ + φ) ∈ D(U) as the sum of functions of compact support has

compact support and, since each one is arbitrarily differentiable, so its the sum. Scalar multiplication

operation is treated the same way. □

Example 5. The most famous type of test functions are the so called Bump Functions †. A Circular

Bump Function inRn is a functionΨ : Rn → R of the form:

Ψ(x) = exp

(
−1

1 − ∥x∥2

)
· 𝟙B1 =


exp

(
−1

1 − ∥x∥2

)
, if ∥x∥ < 1

0, otherwise.

The graph of a circular bump function has the form shown in Figure 2.5 shown bellow for theR2 case.

†Some author use the term Bump Functions as a synonym to Test Functions
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x1

x2

Ψ(x) = Ψ(x1, x2)

Figure 2.5: Example of a two dimensional bump function.

A Square Bump Function in Rn is a functionΦ : Rn → R that is the product of one dimensional

circular bump functions onR, i.e., functions of the form:

Φ(x) = Ψ(x1) · · ·Ψ(xn).

2.3 NotionOf Convergence And Induced Topology onD(U)

So, already being established thatD(U) is a infinite dimensional vector space, the goal is to add amore

structure to this space and for that matter a notion on convergence is very important. For that to be

case, a metric, topology or norm should be defined.

In fact, every norm induces a metric and every metric induces a topology. However, latter on, it

will be shown that defining just the a norm or a metric will not be sufficient to establish a specific

convergence on a suitable topology.

The motivation for this concept of convergence is that the distributions should act continuously

on the test functions and that the convergence to be defined gives the right notion of continuity.

31



Firstly, however, it is important to recall the possible notions of convergence to define the limit of

sequences in vector spaces that are normed, metric or topological spaces.

Definition 15. Let (V, F) be a vector space over a field F, (vj) a sequence of elements in V and v ∈ V.

1. If ∥·∥ is a norm endowed in (V, F) such that (V, F, ∥·∥) is a linear normed space, then, by defi-

nition:

vj
∥ · ∥−−−−−−−→ v ⇐⇒

vj − v
 n−→∞−−−−−→ 0.

2. If d(·, ·) is a distance endowed in (V, F) such that (V, F, d) is a linear normed space, then, by

definition:

vj
d−−−−−→ v ⇐⇒ d(v, vj)

n−→∞−−−−−→ 0.

3. If τ is a topology endowed in (V, F) such that (V, F, τ) is a topological vector space, then, by defi-

nition:

vj
τ−−−−−→ v ⇐⇒ ∀U ∈ τ with v ∈ U, ∃N ∈ Z+ such that vj ∈ U for every j ≥ N.

It turns out that the metric and normed convergence are not sufficient and a more strong notion

of convergence is needed. This convergence should require the two basic properties that characterize

test functions, i.e., the compact support and the arbitrarily differentiability.

For that matter, define a suitable topology (actually in the following the definition will be of se-

quential continuity, in the same way that will be done in the space of distributions, and this will be

explained in an observation at the end of the definition of convergence for distributions):
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Definition 16. Given a sequence of test functions (φj) ⊆ D(U) and φ ∈ D(U), the Canoni-

cal Distribution Convergence (sometimes called D-convergence for short) is defined by saying that

φj
D−−−−−−→ φ if and only if

1. There exists a compact set K ⊆ U such that supp(φj) ⊆ K for all j;

2. For any multi-index α ∈ (Z+)m, m ∈ Z+, 𝜕αφj converges to 𝜕
αφ uniformly.

The first condition inDefinition 16 is to avoid that the supports of the test functions in a sequence

gets arbitrarily large so that the limitwould not be a test function anymore. This is illustrated in Figure

2.9 bellow.

· · ·

Figure 2.6: Illustration of the fact that the definition of D convergence requires that the support of the test function do
not get arbitrarily large in analogy with light strips in a rainbow.

So, as it occurs in a rainbow with the light strips, it is wanted for test functions to have compact

support so that a test function always tests bounded sets.

The second condition in Definition 16 is imposed to assure that every derivative gets arbitrarily

close to the derivative of the limit function and sufficiently large index n in the sequence. This is

illustrated in Figure 2.7 ahead.
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Figure 2.7: Illustration of the fact that the multi derivatives of the sequences of tests functions get arbitrarily close to the
respect derivative of the limit test function.

In particular, for the 0 multi-index, the uniform convergence of the test functions themselves its

assured.

It is a standard fact in analysis that uniform convergence is equivalent to convergence in the supre-

mum norm. Therefore, the second requirement in Definition 16 can be rewritten as

𝜕αφj − 𝜕αφ

∞

j−→∞
−−−−−→ 0. (2.1)

2.4 Distributions And The Space Of DistributionsD′(U)

The canonical distribution convergence endowed inD(U) in fact turns this space into a topological

vector space, where the scalar multiplications, the group operation and the operation of taking the

group inverses on the space are continuous map.

Now the concept of distributions and the Space of Distributions can be finally defined.
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Definition 17. A Distribution on U ⊆ Mn is a continuous linear functional T : D(U) → K, i.e.,

the following properties hold:

1. (Linearity):

T(c1φ1 + c2φ2) = c1T(φ1) + c2T(φ2),

for all c1, c2 ∈ K and φ1, φ2 ∈ D(U);

2. (Continuity):

T(φj)
j−→∞
−−−−−→ T(φ) if φi

D−−−−−−→ φ.

The set of all distributions on U is actually a vector space and it is called the Space of Distribu-

tions and it is denoted by D′(U). This vector space endowed with the weak topology ω forms a

topological vector space and its the Canonical Topological Vector Space of Distributions.

In requirement (2) of Definition 17, the notion of continuity is given by a notion of convergence.

This is called sequential continuity. However, even though these notions are equivalent for met-

ric spaces, they are not always equivalent in general. In fact, a topology is precisely defined in terms

of convergence of nets (see [16]). Defining a topology is equivalent to specify all convergence nets.

However, it can be show that, in this case, sequential continuity and continuity are equivalent since

the space has local countable basis.

Example 6. TheDirac’s Delta Distribution, or more commonly,Dirac’s Delta Function inKn is a

distribution δ ∈ D′(Kn) defined by

δ :D(Kn) → K

φ ↦→ φ(0).

Verifying the linearity is straightforward. The continuity its also not hard. In fact, let φ ∈ D(Kn),
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(φj) ⊆ D(Kn) with φj
D−−−−−−→ φ. Then, since the D-convergence implies uniform (and therefore

pointwise) convergence, φj(x)
j−→∞
−−−−−→ φ(x) for every x ∈ Kn. Taking x = 0, the continuity follows as

δ(φj) = φj(0)
j−→∞
−−−−−→ φ(0) = δ(φ).

Example 7. Continuous Functions induce distributions and, therefore, sometimes are over viewed as

distributions in some abuse of the term. In fact, let f ∈ C(Kn) be a continuous function. Then f induces

a distribution Tf defined as

Tf :D(Kn) −→ K

φ ↦−→ Tf(φ) =
∫
Kn

fφ dλ.

The linearity comes from the fact that integral is a linear operator. The continuity comes similarly as

what was done in Example 6, but here instead of the pointwise convergence, the more strong consequence

of theD-convergence, namely the uniform convergence, will be required:

φj
D−−→ φ =⇒ φj

unif
−−−→ φ.

Then the claim is that Tf(φj)
j−→∞
−−−−−→ Tf(φ). In fact, by the Dominated Convergence Theorem:

lim
j−→∞

Tf(φj) = lim
j−→∞

∫
Kn

φj ·f dλ =
∫
Kn

lim
j−→∞

(φj ·f) dλ =
∫
Kn

f· lim
j−→∞

(φj) dλ =
∫
Kn

f·φ dλ = Tf(φ).

This types of distributions are usually called the Induced Distributions. In fact, the same construc-

tion works for continuous functions defined on an open subset U ⊆ Kn.

Proposition 5. Let f : U → K, g : U → K be continuous functions and Tf,Tg ∈ D′(U) its induced

distributions. Then:

f = g ⇐⇒ Tf = Tg.
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Proof. The implication f = g =⇒ Tf = Tg comes directly from the definition. Suppose now that

Tf = Tg. This means that for every test function φ ∈ D(U):

∫
U
fφ dλ =

∫
U
gφ dλ.

Since φ has compact support and f and g are continuous,

∫
U
fφ dλ =

∫
U
gφ dλ < ∞.

Now, if ∫
E

f dλ =
∫
Mn

f · 𝟙E dλ =
∫
E

g dλ =
∫
Mn

g · 𝟙E dλ

for every measurable set E, then f = g. However, every measurable function can be approximated by

simple functions †. Every simple function in turn can be approximated by test functions. So take a

sequence of test functions (ψ)j −→ 𝟙E pointwise. Then (ψ)j · f −→ 𝟙E · f and (ψ)j · g −→ 𝟙E · g

pointwise. By the monotone convergence theorem:



lim
j−→∞

∫
Mn

φj · f dλ =
∫
Mn

φj · f dλ =
∫
E

f dλ,

lim
j−→∞

∫
Mn

φj · g dλ =
∫
Mn

φj · g dλ =
∫
E

g dλ.

Hence, by the above equations, f = g almost everywhere. However, since f and g are continuous,

so is f − g. Thus, the set A = {x : f(x) ≠ g(x)} has measure zero. A in turn can be written as

A = [f − g]−1((−∞, 0) ∪ (0,∞)), and, therefore is open. Being a open set of measure zero in the

usual topology, A = ∅, which implies that f = g. □

†See [2].
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Proposition 5 shows that indeed, continuous functions can be identified with distributions with-

out any concept loss. Actually, there are some advantages in doing so, for example, obtaining tools

like the Delta Function. In fact, more classes of functions can be identified with distributions:

Example 8. Let f : Kn → C be locally integrable, i.e., for every compact set K ⊆ Kn,
∫
K f dλ < ∞.

This is usually denoted by writing f ∈ L1
Loc(Kn). Then f defines a distribution in the same fashion as

done for continuous functions. In particular, changing the values of f on any set of measure zero will not

change the distribution. For example, let

xs+ :=


xs, if x > 0,

0, if x < 0,

defines a distribution if and only ifℜ𝔢{s} > −1.

There is another useful characterization of distributions which is presented in the following theo-

rem:

Theorem 5. A linear map T : D(U) → K is a distribution if and only if for all compact sets K ⊆

U there exists a non negative integer N ∈ Z+ and a positive constant C > 0 such that for all tests

functions φ ∈ D(U), if supp(φ) ⊆ K, then the value T(φ) is bounded from above by
��T(φ)�� ≤ C ·∑

|α | ≤N
𝜕αφ∞. In short notation:

T ∈ D′(U) ⇐⇒ ∀
K⊆U,
K compact

∃
N∈Z+

∃
C>0

: ∀
φ∈D(U)

, supp(φ) ⊆ K =⇒
��T(φ)�� ≤ C ·

∑
|α | ≤N

𝜕αφ∞.
Proof. ( ⇐= ) : Suppose that the given estimate is valid.

Let (φk) ⊆ D(U), ∈ D(U) for all k ∈ Z+ and φk
D−−→ φ. By hypothesis, there is a compact set

K ⊆ Uwith supp(φk) ⊆ K for all k. Moreover, since theD-convergence is valid, for all multi indices

α,
Dαφk −Dαφ


∞

k−→∞−−−−−→ 0. It suffices to prove that |T(φk) −T(φ) | k−→∞−−−−−→ 0. Indeed, by linearity
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and knowing that φ − φk is again a test function, there exists a N ∈ Z+ and a C > 0 such that the

estimate holds:

|T(φk) − T(φ) | = |T(φk − φ) | ≤ C ·
∑
|α | ≤N

𝜕αφ∞ k−→∞−−−−−→ 0,

since the sum is finite over the multi indices. Hence, T ∈ D′(U).

( =⇒ ) : Suppose that T ∈ D′(U).

The idea here is to prove by contraposition. Hence, the starting point is to negate the right hand

side, which can be done by exchanging the quantifiers:

∃
K⊆U,
K compact

: ∀
N∈Z+

∀
C>0

∃
φ∈D(U)

, supp(φ) ⊆ K ∧
��T(φ)�� > C ·

∑
|α | ≤N

𝜕αφ∞,
where here ∧ denotes the logical operator “and”. The goal is to prove that T can not be continuous.

The above expression means that there exist a compact set such that no matter what constantsN and

C are chosen, there is always a corresponding φ. ChooseN = C = k ∈ Z+. Therefore:

|T(φk) | > k ·
∑
|α | ≤k

𝜕αφ∞.
The zero multi index is as well considered in the sum, which means that the supremum norm of each

φk is also considered. The idea is to define new test functions ψk that will be given by a rescaling of

the φk functions. Since the absolute value |T(φk) | is increasing with k and increases faster than the

supremum norm of φk, take

ψk :=
1

|T(φk) |
φk.

By the definition of the ψk’s and the consideration about the supremum norm, the ψk’s converges

uniformly to the zero function when k goes to infinity. The same argument works for every multi
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index, so that every derivative of ψk behaves the same way. This combined with the fact that all φk

(and therefore all ψk) has support in K, assures the D-convergence. Hence ψk
D−−→ 0. However, the

images under T don’t converge to zero since:

|T(ψk) | =
1

|T(φk) |
|T(φk) | = 1∀k =⇒ |T(ψk) | ̸k−→∞−−−−−→ 0.

Therefore, the map T is not continuous and the proof is completed. □

This means that whenever this estimate is valid, the continuity is assured and therefore, a distribu-

tion. Indeed, some authors use this estimate given in Theorem 5 as the definition of a distribution.

This motivates the following definition:

Definition 18. Let U ⊆ Mn be an open set. Then

T ∈ D′(U) ⇐⇒ ∀
K⊆U,
K compact

∃
N∈Z+

∃
C>0

: ∀
φ∈D(U)

, supp(φ) ⊆ K =⇒
��T(φ)�� ≤ C ·

∑
|α | ≤N

𝜕αφ∞.
If the constant N does not depend on the compact set K, the distribution is said to have order NNN, or be

a NNN-order distribution. This distributions are denoted as D ′
N(U). When one wants to refer to the

specific value of N, one could say the distribution has exactly order N. The set of distributions of finite

order is often denoted asD ′
F(U).

Example 9. Every locally integrable function canbe viewedas a0-orderdistribution, i.e., f ∈ L1
Loc(U) =⇒

Tf ∈ D ′
0(U).

Example 10. Let μ be any positive Radon measure. Then μ defines a distribution Tμ by

Tμ(φ) :=
∫

φ dμ.
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In fact, the linearity is obvious. Moreover

|Tμ(φ) | ≤ μ(supp(φ))
φ∞,

and hence, Theorem 5 can be immediately applied, showing that Tμ is indeed a distribution.

Example 11. Any measure onMn can be viewed as a 0-order distribution.

Example 12. If T is a distribution defined as

T(φ) = 𝜕αφ(x0),

for every test function φ ∈ D(U) and a specific point x0 ∈ Mn, then φ is a |α|-order distribution.

Example 13. Let (xj) be a sequence of points inMn without a limit point. If T is a distribution defined

as

T(φ) =
∑
j
𝜕αjφ(xj),

then T ∈ D ′
F(U) if and only if sup( |αj |) < ∞. In case T ∈ D ′

F(U), the exact order of T is sup(|αj |).

2.5 Regular Distributions

There is a problem concerning distributions that is analogous to the problem presented in the formu-

lation of Fourier Series in general Hilbert Spaces. That is the fact that a distribution is not a function

in the usual sense and therefore, it is not possible to evaluate a distribution T ∈ D′(Mn) in some

point x ∈ Mn of the space.

Nonetheless, it is still meaningful to talk about “evaluating a distribution on an open set collec-

tively”. A distribution T ∈ D′(Mn) is said to vanish in an open set U ⊆ Mn if T(φ) = 0 for all

test functions φ such that supp(φ) ⊆ U. Likewise, a distribution T ∈ D′(Mn) is said to agree
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with a function f on a open set U ⊆ Mn if T(φ) =
∫
f · φ dλ for all φ with supp(φ) ⊆ U. This

is actually one of the reasons one uses the name “test functions”, because it is possible to image that

functions φ ∈ D(Mn) are used to “test” or “detect” the values of a function on a open set. How-

ever, as presented in the previous section, locally integrable functions induce distributions and those

distributions induce functions that are equal almost everywhere. This are some special distributions

that are calledRegular Distributions.

Recall that a function f : Kn → C is locally integrable if for every compact setK ⊆ Kn,
∫
K f dλ <

∞. For this functions, the notation f ∈ L1
Loc(Kn). It is obvious that every integrable function is

locally integrable but the converse does not always hold. Likewise, every continuous function is locally

integrable, but not every locally integrable function is continuous.

With the last result in the previous section given by Theorem 5, it is possible to prove formally

that in fact locally integrable functions correspond uniquely, except maybe in a set of measure zero,

in a one to one relation with an induced distribution Tf. However, the proof is technically more

complicated compared to the case where the function was continuous. That is due to the fect that,

when the function considered were continuous, if it is nonzero at some point, there would exist an

open set with nonzeromeasure where the function would be nonzero. This is not the case for general

locally integrable functions.

In order to prove this result an important result frommeasure theory will be required.

Theorem 6 (Lebesgue Differentiation Theorem). Suppose that f ∈ L1
Loc(Kn). Then, λ-almost all x:

lim
r−→0

1
λ(Br(x))

∫
Br (x)

|f(y) − f(x) | dy = 0,

and

lim
r−→0

1
λ(Br(x))

∫
Br (x)

f(y)dy = f(x).
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Proof. See [8]. □

Proposition 6. Let f : Mn → K be a locally integrable function. Then Tf induces a distribution Tf

that is uniquely related to f except maybe in a set of zero measure i.e.,

f = g a.e. ⇐⇒ Tf = Tg.

Proof. Without loss of generality, consider Mn = Kn. It then suffices to show that the estimate of

Theorem 5 is valid. So let f ∈ L1
Loc(Kn) and define as before:

Tf :D(Kn) −→ K

φ ↦−→ Tf(φ) =
∫
Kn

fφ dλ.

By definition then:

|Tf(φ) | ≤
∫
Kn

|f| · |φ| dλ =
∫

supp(φ)

|f| · |φ| dλ ≤
∫

supp(φ)

|f| dλ ·
φ∞ =

∫
K

|f| dλ ·
φ∞,

for every compact setK ⊇ supp(φ). Therefore, it is straight forward that

|T(φ) | ≤ C ·
∑
|α |<m

Dαφ

∞,

with C =
∫
K |f| dλ andm = 0.

Now, in order to prove that if Tf = Tg then f = g almost everywhere for two locally integrable

functions f and g, first notice that Tf = Tg means that

∫
Mn

fφ dλ =
∫
Mn

gφ dλ
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for every test function φ ∈ D(Mn), which implies that:

∫
Mn

(f − g)φ dλ = 0,

so it suffices to prove that if Tf = 0, then f = 0 λ-almost everywhere.

Now, notice that one can write for every density point x:

f(x) = 1
λ(Br(x))

∫
Br (x)

φ(t) [f(x) − f(t)] dt,

whereφ is a bump function that is equal to 1 at theball of radius r and0outside theball of radius 2r and

the integration is with respect to the Lebesgue measure. Indeed, the above equality is straightforward

to very and it is just a simple calculation. However, due to Theorem 6, one has that

1
λ(Br(x))

∫
Br (x)

φ(t) [f(x) − f(t)] dt r−→0−−−−→ 0,

so f = 0 λ-almost everywhere and the result is proven. □

Definition 19. A distribution T ∈ D′(U) is called regular if there is a locally integrable function f

such that T = Tf. A distribution that is not regular is called a singular distribution.

These distributions in some sense behave like normal functions as discussed before. Of course not

every distribution is regular. In fact the first distribution presented, the Delta, is not regular.

Example 14. The Delta distribution is not regular, i.e., there is no locally integrable function that in-

duces δ. Consider here Mn = Kn and functions f : Kn → K. Then δ ≠ Tf for every locally integrable

function.
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To see this, suppose such f exists, i.e., f ∈ L1
Loc(Kn) with δ(φ) = Tf(φ) for all φ ∈ D(Kn). Then

φ(0) = δ(φ) = Tf(φ) =
∫
Kn

f · φ dλ.

Since f ∈ L1
Loc, it is absolutely integrable on any compact set K ⊆ Kn, in particular in the unit ball B1.

The unit ball is in turn the union of countable circular rings Rk delimited by the circumferences of radius

rk = 1/k, except for the point at the origin O. Hence

∫
B1

|f| dλ =
∫

B1\O

|f| dλ =
∫

⋃
Rk

|f| dλ = a < ∞,

for some constant a. However, since this union is disjoint, the Monotone Convergence Theorem assures

that ∫
⋃

Rk

|f| dλ =
∞∑
k=1

∫
Rk

|f| dλ = a < ∞.

Therefore, the general termgoes to zero since the series converges. So theremust exist some constant k0 ∈ Z+

such that
∞∑

k=k0

∫
Rk

|f| dλ = b < 1.

Then, there must exist ε > 0 such that, denoting the ε-ball ∥x∥ ≤ ε by Bε,

∫
Bε

|f| dλ = b < 1.

The idea to finish the proof is to take test functions that are concentrated at zero, since δ is also

“concentrated” at zero. Take then the Bump Function:
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Ψε(x) = exp

©«
−1

1 −
(
∥x∥2
ε

) ª®®®®¬
· 𝟙Bε =


exp

©«
−1

1 −
(
∥x∥2
ε

) ª®®®®¬
, if ∥x∥ < ε

0, otherwise.

Then,by the definition of the δ andΨε and still supposing the regularity of f:

δ(Ψε) = Ψε(0) =
∫
Kn

f · Ψε dλ,

and since f andΨε are both nonnegative:

Ψε(0) =
∫
Kn

f · Ψε dλ =
∫
Bε
f · Ψε dλ =

����∫
Bε
f · Ψε dλ

���� ≤ ∫
Bε
|f| · |Ψε | dλ ≤ ∥Ψε∥∞ ·

∫
Bε
|f| dλ

< ∥Ψε∥∞ · b < ∥Ψε∥∞,

clearly a contradiction, since ∥Ψε∥∞ can not be less than Ψε(0). Thus, the Delta distribution is not

regular.

2.6 Compatibility BetweenD(U) andD′(U) And The Duality Pairing

It is already established in the text that bothD′(U) andL1
Loc(U) are vector spaces and, in fact,D′(U)

is actually a topological vector space. Moreover, two different continuous functions give rise to two

different distributions on D′(U) and the same property still holds for every function on L1
Loc(U)

up to sets of measure zero. Therefore, there is no loss of information in the process of going from

L1
Loc(U) and in fact,D′(U) can be viewed as a generalisation ofL1

Loc(U) since it also includes singular

distributions like the Delta. The goal in this section is then to ask the natural question that arises

immediately from this extension, i.e., if the operations in these two vector spaces are consistent with
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each other.

The linearity is straight forwarded since, for α ∈ K and f, g ∈ L1
Loc(Mn):

[Tf+αg] (φ) =
∫
Mn

(f + αg) · φ dλ =
∫
Mn

f · φ dλ +
∫
Mn

αg · φ dλ =
∫
Mn

f · φ dλ + α
∫
Mn

g · φ dλ

= Tf(φ) + Tg(φ) = [Tf + αTg] (φ),

for every φ ∈ D(U).

So it is clear that the operations are consistent between L1
Loc(U) and the subspace of regular dis-

tributions onD′(U). The natural question that arises is that if this compatibility is still valid for all

D(U) and D′(U). It turns out that indeed this makes sense because actually the distributions in-

duced by elements inD(U) are dense in the space of all distributionsD′(U). This will be proved at

the end of the Chapter using a tool called Approximations To The Identity orMollifiers.

Therefore, it is usual to introduce the following definition.

Definition 20. Given a test function φ ∈ D(U) and a distribution T ∈ D(U), the evaluation of a

distribution can be represented as

⟨T, φ⟩ := T(φ).

This is called theDuality Pairing notation betweenD(U) andD′(U).

This may appear useless at first but will be very practical, especially dealing with derivatives and

other operations. This clearly emphasizes a bilinear characterization:

⟨·, ·⟩ : D′(U) × D(U) −→ K.

It is important to emphasize that, although the bracket notation here really reminds the usual inner

product in function spaces given by integration, this only is a notation when dealing with all distribu-
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tions since not all distributions are regular, and thus, it does not make sense to integrate their product

with a test function in an obvious way.

2.7 Multiplication of Smooth Functions And Test Functions

The operations of scaling and sumof distributions are pretty clear. However, the question aboutmul-

tiplying two distributions is quite more delicate. In fact, the multiplication T · J of two distributions

T, J ∈ D′(U) is not obvious at all to define. Indeed, such a general multiplication for general distri-

butions would lose important properties of the usual function multiplication and, therefore, lose its

meaning as an extension of the usual multiplication.

Firstly, one could ask a more basic question of what could be the multiplication of a distribution

by a smooth function. So let T ∈ D′(U) and f ∈ C∞(U). The goal is to define the product T · Tf.

Consider in the first place the case whereT is a regular distribution. In this case,T = Tg, for some g ∈

L1
Loc(U). In order to the operations to be compatible, one could wish to define Tf · Tg(φ) = Tf·g(φ)

for any test function φ ∈ D(U). Indeed, doing this:

[Tf + Tg] (φ) := Tf·g(φ) =
∫
U

(f · g)φ dλ =
∫
U

g(f · φ) dλ,

and since f · φ is again a test function (indeed, both f and φ are smooth and φ has compact support,

making the product a smooth function with compact support):

[Tf + Tg] (φ) := Tf·g(φ) = Tg(f · φ).

In fact, the general definition also makes sense to be stated for distributions T that are not regular, as

long as Tf is still defined the same way.

Definition 21. Let T ∈ D′(U) and f ∈ C∞(U). The product of the distributions Tf and T is denoted
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by T · Tf (or sometimes f · T in an abuse of language identifying functions with distributions) and is

defined as:

⟨f · T, φ⟩ := ⟨T, f · φ⟩,

for all test functions φ ∈ D(U).

However, it should be proved that this object still fulfills the two properties of distributions, i.e.,

linearity and continuity.

Proof. The linearity is straightforward. Indeed, given φ, ψ ∈ D(U) and α ∈ K:

⟨T · Tf, φ + αψ⟩ = ⟨T, f · (φ + αψ)⟩ = ⟨T, fφ + αfψ⟩ = T(fφ + αfψ) = T(fφ) + αT(fψ)

= ⟨T, fφ⟩ + α⟨T, fψ⟩ = ⟨T · Tf, φ⟩ + α⟨T · Tf, ψ⟩.

To prove the continuity, Theorem 5 will be used. By the Leibniz Rule For Differentiation (in multi-

index notation):

Dα (f · φ) =
∑
β≤α

(
α
β

)
Dβf · Dα−βφ.

So, by Theorem 5,

T ∈ D′(U) ⇐⇒ ∀
K⊆U,
K compact

∃
N∈Z+

∃
C>0

: ∀
φ̃∈D(U)

, supp(φ̃) ⊆ K =⇒
��T(φ̃)�� ≤ C ·

∑
|α | ≤N

𝜕αφ̃∞.
It is already known that T is a distribution. Hence, the goal is to show that an analogous inequality

holds for T · Tf. Indeed, by the definition of the product of the distributions and considering the
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estimate given that T is a distribution:

|T · Tf(φ) | = |T(f · φ) | ≤ C ·
∑
|α | ≤N

𝜕α (f · φ)∞ = C ·
∑
|α | ≤N

∑β≤α
(
α
β

)
Dβf · Dα−βφ


∞

≤ C ·
∑
|α | ≤N

∑
β≤α

(
α
β

)Dβf · Dα−βφ

∞
≤ C ·

∑
|α | ≤N

∑
β≤α

(
α
β

)Dβf

∞
·
Dα−βφ


∞
.

Well, since α is a finitemulti-index, the sum that runs over β is a sumof finitelymany terms. Moreover,

the term
Dβf


∞ is finite anddoes not dependon the test functionφ. Also, summing along the indices

α−β is accounted for in the sumover |α| < N. Hence, the sumover β that runs across all combinations(α
β
)
can be put in a constant term whose product with the constant C results in a new constant C̃

leading to

|T · Tf(φ) | ≤ C̃
∑
|α | ≤N

Dαφ

∞,

proving thatT ·Tf is indeed a distribution. Therefore, the product of a distribution and a distribution

induced by a smooth function is well defined and again a distribution. □

2.8 Coordinate Transformations and Pullbacks

It is also important in the theory to understand how a change of coordinates works in the context of

distributions.

As a starting point, considerMn = Kn and a linear map A : Kn → Kn. If this map is invertible, it

can be seen as a change of coordinates.
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AAA

Figure 2.8: Change of coordinate by invertible linear map.

The invertible linear A can stretch, rotate or reflex the original grid that represents the original

basis. However, many properties does not change with this coordinate transformation. Here, one of

the most important ones is that a locally integrable function is still locally integrable with respect to

this new basis. More precisely

f ∈ L1
Loc(Kn) =⇒ f ◦ A ∈ L1

Loc(Kn).

The central point here is then to understand how this change of coordinates connects the two cor-

responding distributions (induced by f and f ◦ A). However, by definition for f ∈ L1
Loc(Kn) and

φ ∈ D(Kn)

⟨Tf◦A, φ⟩ =
∫
Kn

(f ◦ A) · φ dλ,

and, doing a change of variables (since A is invertible):

⟨Tf◦A, φ⟩ =
1

| det(A) |

∫
Kn

f( A(x)︸︷︷︸
y

) · φ(x) · | det(A) | dx︸        ︷︷        ︸
dy

=
1

| det(A) |

∫
Kn

f(y)φ(A−1y) dy

=

〈
Tf,

1
| det(A) |φ ◦ A−1

〉
.

This calculation motivates the definition for non-regular distributions to be the same result.
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So let T ∈ D(Kn) and A : Kn → Kn be an invertible linear map. † Then denote by T ◦ A the

distribution induced by the change of coordinates A defined by

〈
T ◦ A, φ

〉
:=

〈
T,

1
| det(A) |φ ◦ A−1

〉
.

A translation may also be considered. Let A be an invertible linear map as before and b ∈ Kn and

consider the newmap Ab defined by

Ab :K
n −→ Kn

x ↦−→ A(x) + b.

The inverse will be

A−1
b :Kn −→ Kn

y ↦−→ A−1(y − b).

Therefore, one could also define T ◦ Ab the distribution induced by the change of coordinates Ab

defined by 〈
T ◦ A,φ

〉
:=

〈
T,

1
| det(A) |φ ◦ A−1

b

〉
.

In more generality, consider the following definition:

Definition 22. Let A, B,C be sets and consider two maps f : B → C and g : A → B. The pullback of

the map f induced by g is the map g := f ◦ g.

Let U1,U2 ⊆ Rn be open sets and F : U1 → U2 be a C∞ diffeomorphism. If f ∈ C0(U2) is a

†Here this will not be put in a definition in the usual way because at the end a more general definition will
be made considering more general coordinate transformations.
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complex function, then F = f ◦ F : U1 → C is in C0(U1) and thus can be viewed as an element of

D′(U1) Then, its action in the change of coordinates induced by the diffeomorphism will be

⟨F★ f, φ⟩ =
∫
U1

f(F(x))φ(x) dx =
∫
U2

f(y)φ(F−1(y)) | det
(
D(F−1) (y)

)
| dy

= ⟨f, φ ◦ (F−1) · | det
(
D(F−1)

)
|⟩ = ⟨f, (F−1) ★ φ · | det

(
D(F−1)

)
|⟩.

Therefore, the following definition can be formalized

Definition 23. Let U1,U2 ⊆ Rn be open sets and F : U1 → U2 be a C∞ diffeomorphism. Then, for

any T ∈ D′(U2), the pullback distribution of T under F is defined as:

⟨F★T, φ⟩ := ⟨T, (F−1) ★ φ · | det
(
D(F−1)

)
|⟩,

for all φ ∈ D(U1).

It can be showed that indeed that actually F★T ∈ D′(U1) and that themapD′(U2) −→ D′(U1),

T ↦−→ F★T is linear and sequentially continuous. If fact, this theory can be done in more generality

for a submersion‡ F. For more details, see [11].

Observation 2. As a final remark in this section, it is worth pointing out that the general idea for

extending new concepts like this to the theory of distributions, in general, have the same central idea. This

works in general for operations well defined for the test functions φ ∈ D(U) (e.g. derivatives, Fourier

Transforms, convolutions, etc). More precisely, let L be an operator such that L(f) = Lf is well defined

for some class of locally integrable functions f (and thus a natural concept arises for the associated regular

distributions) and

⟨Lf, φ⟩ = ⟨f, L∗φ⟩,

‡F ∈ C∞ (U1,U2) is a submersion ifDF is surjective at each point ofU1.
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for some operation L∗. Then, given an arbitrary distribution T ∈ D′(U), one could define LT in the

same way:

⟨LT, φ⟩ = ⟨T, L∗φ⟩.

2.9 Derivatives Of Distributions

One of the big advantages in this extension, i.e., working with distributions, is that a construction of

a differentiation allow them to always be differentiated. Moreover, this definition extends the usual

notion of derivatives of actual functions, another reason why distributions are very often called gen-

eralized functions.

The general idea to come up with the definition is the following. Consider f : Kn → C, f ∈

C1(Kn) and Tf ∈ D′(Kn) the regular distribution induced by f. Then, the partial derivatives 𝜕if, i ∈

{1, . . . , n}, of f arewell defined and are continuous functions fromKn toC. Hence, the partial deriva-

tives induce regular distributionsT𝜕if. This distributions inducedby the derivatives iswhat onewould

expect to be defined as the derivatives of the distribution. In fact, for every φ ∈ D(U):

⟨T𝜕if, φ⟩ =
∫
Kn

𝜕ifφ dλ.

The idea here is to use integration by parts. In fact, given an open bounded subset Ω ⊆ Kn with a

piecewise smooth boundary 𝜕Ω, then

∫
Ω

𝜕ifφ dλ =
∫
𝜕Ω

fφ dλ −
∫
Ω

f𝜕iφ dλ.

However, φ is compactly supported. Therefore, one could choose an open setΩ ⊇ supp(φ) such that

the integral outsideΩ is zero. In fact, integrating in allKn (one could think sending the boundary 𝜕Ω
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to infinity): ∫
Kn

𝜕ifφ dλ = −
∫
Kn

f𝜕iφ dλ.

Therefore, the natural definition would be

⟨T𝜕if, φ⟩ := −⟨Tf, 𝜕iφ⟩ = −
∫
Kn

f𝜕iφ dλ = Tf(𝜕iφ).

The idea is to take this result as the definition for a general distribution T ∈ D′(U). The general

idea in the observation in the final of the last section can be applied here, considering L = 𝜕i and the

“adjoint” L∗ = −𝜕i.

Definition 24. Let T ∈ D′(Kn), then the ith partial derivative distribution, denoted by 𝜕iT is

defined by

⟨𝜕iT, φ⟩ := −⟨T, 𝜕iφ⟩,

for all test functions φ ∈ D(Kn). Hence, for every multi-index α ∈ (Z+)k, the partial derivative

distribution with respect to α can be defined as

⟨𝜕αT, φ⟩ = (−1) |α | ⟨T, 𝜕αφ⟩,

for all test functions φ ∈ D(Kn).

Indeed, note that if φ ∈ D(Kn), then naturally 𝜕iφ ∈ D(Kn) and therefore the right hand side

of the definition is well defined. Furthermore, the map 𝜕iT : φ ↦−→ −⟨T, 𝜕iφ⟩ is linear. In fact, for

φ, ψ ∈ D(Kn) and α ∈ K:

⟨𝜕iT, φ + αψ⟩ = −⟨T, 𝜕i(φ + αψ)⟩ = −⟨T, 𝜕iφ + α𝜕iψ⟩ = −(⟨T, 𝜕iφ⟩ + α⟨T, 𝜕iψ⟩)

= −⟨T, 𝜕iφ⟩ + α(−⟨T, 𝜕iψ⟩) = ⟨𝜕iT, φ⟩ + α⟨𝜕iT, ψ⟩.
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Thecontinuityof 𝜕i follows fromthe fact that ifφj
D−−→ 0, then 𝜕iφj

D−−→ 0, and therefore (−⟨T, 𝜕iφj⟩) −→

0, which shows that 𝜕iT ∈ D′(Kn).

One could ask if this is actually a generalization of the derivatives of usual functions. The answer

however is already given in themotivation andmoreover, the derivatives always commute. In fact, this

result is given in the following proposition:

Proposition 7. Let f ∈ Cm(Kn), then for every multi-index α such that |α| = m ∈ Z+, 𝜕αTf = T𝜕αf.

Moreover, every m-order derivative of f with the same factors as α commute.

Proof. The fact that 𝜕αTf = T𝜕αf has already been proven in the motivation for the definition of the

derivatives of distributions. The fact that all distributions derivatives commute comes form the fact

that, for every test function φ ∈ D(Kn):

⟨𝜕αTf, φ⟩ = −⟨Tf, 𝜕
αφ⟩,

and, since φ ∈ D(Kn) = C∞
c (Kn) all derivatives of φ commute by Clairaut’s Theorem. Hence, the

derivatives of Tf also commute. □

Example 15. Let u be the Heaviside’s step function on R and δ the Dirac’s delta also “on R” (because

actually δ is not actually a real function). Then u′ = δ. In fact, this works in more generality, but

as a first example, consider only the real case. Then, obviously u ∈ L1
Loc(R) and, for all test functions

φ ∈ D(R), φ(x) = 0 for sufficiently large x. Therefore:

u′(φ) = ⟨u′, φ⟩ = −⟨u, φ′⟩ = −
∫ ∞

−∞
u · φ′ dx = −

∫ ∞

0
φ′ dx = −φ(x)

����∞
0
= φ(0) = δ(φ).

Example 16. The derivative δ′ of the δ distribution is called the dipole and is given by:

⟨δ′, ⟩ = −⟨δ, φ′⟩ = −φ′(0),
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for all test functions φ ∈ D.

Note that in Example 15 the classical derivative of u in the regions x < 0 and x > 0 is equal to

0 everywhere. The δ distribution, when thought as a “generalized function” as an arrow of infinite

amplitude at x = 0 coincides with the classical derivative, except at x = 0, where the jump in the

Heaviside function occurs. Philosophically, this infinite amplitude occurred exactly because of this

jump.

Therefore, it is possible to write:

u′ = δ = T0 + 1 · δ0,

where T0 is the distribution induced by the zero function and δ0 corresponds to the “jump” in the

value of u at x = 0. This is indeed no coincidence and is a particular case of the following result, that

says roughly that the derivative of a function f in the sense of distributions is the classical derivative

plus δa (delta distribution centered at x = a) times the jump of f at the point awhere a jump occurs,

Proposition 8 (Jump Rule). Let f be continuous differentiable on R except at the point a ∈ R, where

the limits f(a+), f(a−), f′(a+), f′(a−) exist. Then f, f′ are locally integrable and

(Tf)′ = Tf ′ + (f(a+) − f(a−))δa,

where deltaa is the delta distribution centered at x = a.
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Proof. Let φ ∈ D(R) and suppose that φ is 0 outside a interval [α, β] such that a ∈ [α, β]. Then:

⟨(Tf)′, φ⟩ = −⟨Tf, φ′⟩

= −
∫ β

α
f(x)φ′(x)dx

= −
∫ a

α
f(x)φ′(x)dx −

∫ β

a
f(x)φ′(x)dx

=
∫ a

α
f
′ (x)φ(x)dx − f(a−)φ(a) +

∫ β

a
f
′ (x)φ(x)dx + f(a+)φ(a)

=
∫ β

α
f
′ (x)φ(x)dx + (f(a+) − f(a−))φ(a)

= ⟨Tf ′ , φ⟩ + (f(a+) − f(a−))⟨δa, φ⟩

= ⟨Tf ′ + (f(a+) − f(a−))δa, φ⟩.

□

Observation 3. The previous result can be immediately extended to the case where f is continuously

differentiable except on a finite number of points ak such that at these points the function satisfies the

same assumptions required before. In this case:

(Tf)′ = Tf ′ +
∑
k
(f(ak+) − f(ak−))δak .

Furthermore, this result can actually be extended to the casewhere f has infinitelymany, but locally finite,

jump discontinuities, i.e., in any compact interval one can only findfinitelymany of these discontinuities.

In this case, denoting σk = (f(ak+) − f(ak−)), the sum on the right hand side will be the distribution

defined by: 〈∑
k
σkδak , φ

〉
:=

∑
k
σkφ(ak), φ ∈ D(R)
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where, for a given test function φ, only finitely many terms on the right hand side are nonzero.

To finish this section, it is important to recall from the beginning that one motivation in the devel-

opment of the theory of distributions was indeed to generalize the notion of derivatives and for this

to be useful in many mathematical areas. Sometimes this derivatives in the sense of distributions are

calledweak derivatives.

To illustrate this fact, one can consider examples studied in Partial Differential Equations (P.D.E).

Definition 25. A distribution satisfying a P.E.D. in the sense of distributions will be called a weak

solution to a P.E.D.

Finally, this is illustrated in the following example that is very important in physics and engineering:

Example 17 (Weak Solution To TheWave Equation). Recall that given a function f ∈ C2(R), then

u(x, t) :=
f(x + t) + f(x − t)

2
,

is a classical solution to thewave equation

𝜕2u
𝜕t2

− 𝜕2u
𝜕x2

= 0,

given boundary conditions u(x, 0) = f(x) and with zero initial speed, i.e., ut(x, 0).

Indeed, if the function f is only locally integrable, the u expressed above is still a solution to the P.E.D.,

however, now in the sense of distributions.

To prove this, the following result concerning the transport equation is useful (see [18] for this). Given

f ∈ L1
Loc(R), then u+ and u− given by


u+(x, t) := f(x + t),

u− (x, t) := f(x − t),
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are weak solutions to 
𝜕u
𝜕t

− 𝜕u
𝜕x

= 0,

𝜕u
𝜕t

+ 𝜕u
𝜕x

= 0,

respectively.

Now recall that for a distribution T ∈ D′(R2):

𝜕2T
𝜕x𝜕t

=
𝜕2T
𝜕t𝜕x

.

Hence: (
𝜕

𝜕t
− 𝜕

𝜕x

) (
𝜕

𝜕t
+ 𝜕

𝜕x

)
T =

(
𝜕2

𝜕t2
− 𝜕2

𝜕x2

)
T =

(
𝜕

𝜕t
+ 𝜕

𝜕x

) (
𝜕

𝜕t
− 𝜕

𝜕x

)
T.

So let u be given by

u(x, t) =
f(x + t) + f(x − t)

2
,

and φ ∈ D(R2). Then:

〈
𝜕2u
𝜕t2

− 𝜕2u
𝜕x2

, φ
〉
=

1
2

〈(
𝜕2u
𝜕t2

− 𝜕2u
𝜕x2

)
f(x + t), φ

〉
+ 1
2

〈(
𝜕2u
𝜕t2

− 𝜕2u
𝜕x2

)
f(x − t), φ

〉
=

1
2

〈(
𝜕

𝜕t
+ 𝜕

𝜕x

) (
𝜕

𝜕t
− 𝜕

𝜕x

)
f(x + t), φ

〉
+ 1
2

〈(
𝜕

𝜕t
− 𝜕

𝜕x

) (
𝜕

𝜕t
+ 𝜕

𝜕x

)
f(x − t), φ

〉
= − 1

2

〈(
𝜕

𝜕t
− 𝜕

𝜕x

)
f(x + t),

(
𝜕

𝜕t
+ 𝜕

𝜕x

)
φ
〉
− 1
2

〈(
𝜕

𝜕t
+ 𝜕

𝜕x

)
f(x − t),

(
𝜕

𝜕t
− 𝜕

𝜕x

)
φ
〉

★
= −0 − 0 = 0,

where the (★) must be justified. To see that this is indeed the case, notice that for φ ∈ D(R2), then

(
𝜕

𝜕t
± 𝜕

𝜕x

)
φ ∈ D(R2).
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But for any test function ψ

〈(
𝜕

𝜕t
− 𝜕

𝜕x

)
f(x + t), ψ

〉
= 0 =

〈(
𝜕

𝜕t
+ 𝜕

𝜕x

)
f(x − t), ψ

〉
,

and, therefore, (★) holds.

2.10 Mollifiers And The Density Of Regular Distributions

In this section, the goal will be to show how any distribution can be approximated by regular distri-

butions and, therefore, in particular justifying the definition for the duality pairing.

However, firstly, it is important to define the Mollifiers and the process of mollification to show

how a distribution can by approximated by a sequence of smooth functions.

Definition 26. Let U ⊆ Mn be an open subset and φ ∈ D(U) satisfying the following properties:

1.
∫
Mn

φ dλ = 1;

2. lim
ε−→0

φε(x) = lim
ε−→0

ε−nφ
(x
ε

)
= δ(x),

where the δ represents the Dirac’s Delta and the limit must be understood in the space of distributions.

Then the function φ is called aMollifier or anApproximation Of The Identity.
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δ(xxx)

Figure 2.9: Mollifiers approximating the Dirac’s Delta.

Consider hereMn = Rn and consider a function η ∈ C(Rn) a non-negative function such that

supp(η) ⊆ B1 = {x ∈ Rn : ∥x∥ < 1}. Moreover let η satisfy that
∫
Rn

η dλ = 1.

For example, taking η = ψ the bump function:

η(x) =


c exp

(
−1

1 − ∥x∥2

)
, for ∥x∥2 < 1,

0, otherwise.

The constant c is just to ensure that the integral is unitary.

Definition 27. LetΩ ⊆ Rn be a bounded domain (i.e., non-empty connected open set) and f ∈ L1(Ω).

Given ε > 0, themollification of f, denoted by fε, is defined by:

fε(x) = ε−n
∫
Ω

η
(x − y

ε

)
f(y) dy for x ∈ Ω and ε < dist(x, 𝜕Ω);
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where 𝜕Ω is the boundary ofΩ.

Notation 2. Let the symbol ⋐ be used in A ⋐ B to denote that A ⊆ B.

Lemma 2. If Ω̃ ⋐ Ω and 0 < ε < dist(Ω̃, 𝜕Ω), then fε ∈ C∞(Ω̃).

Proof. See [12]. □

Just as in the notation at the beginning of this chapter, denote for k ∈ Z+ ∪ {∞}:

Ck
c (Ω) = {φ ∈ Ck(Ω) : supp(φ) ⋐ Ω}.

The following result ensures one of the central aspects of this subject.

Theorem 7. Let f ∈ C0(Ω). Then, the mollification fε converges uniformly on compact sets to f as ε goes

to zero, i.e.,

f ε−→0−−−−→ fε.

Proof. By definition of fε:

fε(x) = ε−n
∫

∥x−x0 ∥<ε

η
(x − y

ε

)
f(y) dy =

∫
∥z∥<1

η(z)f(x − εz) dz,

where z = (x− y)/ε and x0 its just a point that translate the ε-ball to the right place. Now, if Ω̃ is such

that Ω̃ ⋐ Ω and ε < (1/2) · dist(Ω̃, 𝜕Ω), since

f(x) =
∫

∥z∥<1

η(z)f(x) dz,
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then

sup
x∈Ω̃

|f(x) − fε(x) | = sup
x∈Ω̃

���� ∫
∥z∥≤1

η(z) · (f(x) − f(x − εz)) dz
����

≤ sup
x∈Ω̃

∫
∥z∥≤1

��η(z) · (f(x) − f(x − εz))
�� dz

= sup
x∈Ω̃

∫
∥z∥≤1

η(z)
��·(f(x) − f(x − εz))

�� dz
≤ sup

x∈Ω̃
sup
∥z∥≤1

��(f(x) − f(x − εz))
�� .

Since f is continuous in the compact setΩ, it will also be uniformly continuous, then

lim
ε→0

(
sup
x∈Ω̃

sup
∥z∥≤1

��(f(x) − f(x − εz))
��) = 0.

Therefore, because f is uniformly continuous onΩ′ (the compact set supp(f) ⊆ Ω ⊇ Ω′ and f ≡ 0

outsideΩ) the upperbound above tends to zero as ε goes to zero. □

For the next result, the following theorem is useful.

Theorem 8 (Lusin’s). Let μ be a Borel regular measure on Rn and f : Rn −→ Rm be a μ-measurable

function. Also, let A ⊆ Rn be a μ-measurable set with μ(A) < ∞. Then, for a fixed ε > 0, there exists a

compact set K ⊆ A such that

1. μ(A \ K) < ε,

2. f
��
K is continuous (and therefore uniformly continuous).

Proof. See [7]. □

As a straightforward corollary:
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Corollary 4. LetΩ ⊆ Rn be a bounded domain and f ∈ Lp(Ω), 1 ≤ p < ∞ and ε > 0. Then, there

exists g ∈ C0(Rn) such that
f − g


p < ε.

Proof. This is an obvious consequence of Theorem 8. □

Theorem 9. LetΩ ⊆ Rn be a bounded domain and f ∈ Lp(Ω), 1 ≤ p < ∞. Then, extending f as the

zero function inRn \Ω, fε can be defined in allΩ and

fε
Lp−−−−→

ε−→0
0.

Proof. Starting just as in Theorem 7,

fε(x) =
∫

∥z∥≤1

η(z)f(x − εz) dz

=
∫

∥z∥≤1

(
η(z)1−

1
p
)
·
(
η(z)1/pf(x − εz)

)
dz

≤
©«

∫
∥z∥≤1

η(z) dz
ª®®¬ ·

©«
∫

∥z∥≤1

η(z) · |f(x − εz) |p
ª®®¬

1
p

★
=

©«
∫

∥z∥≤1

η(z) · |f(x − εz) |p dz
ª®®¬

1
p

,
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where (★) comes from the definition of η. Hence:∫
Ω

|fε(x) |p dx ≤
∫
Ω

∫
∥z∥≤1

η(z) |f(x − εz) |p dz dx

★★
≤

∫
∥z∥

η(z)
∫
Ω

(
|f(x − εz) |p dx

)
dz

≤
∫

∥z∥≤1

η(z) ©«
∫
Rn

|f(y) dy|ª®¬ dz

=
∫
Rn

|f(y) |p dy

(2.2)

where (★★) comes from Fubini’s Theorem.

Therefore, for a given ε > 0. Thus, take Ω̃ ⋐ Ω such that:

©«
∫

Ω\Ω̃

|f(x) − fε(x) | dx
ª®®¬

1
p

<
ε
4
, (2.3)

which can be done due to Corollary 4. Hence, if ψ ∈ Lp(Ω), then for every δ > 0, there will exist

Ω′ ⋐ Ω such that ∫
Ω\Ω′

|ψ(x) |p dx < δ. (2.4)

Then, take φ ∈ C0(Kn) such that f − φ

p <

ε
4
. (2.5)

By Theorem 7, and reinforcing that the Lebesgue measure λ is being used, for sufficiently small ε:

φ − φε

Lp (Kn ) ≤ λ(Ω)

1
p · sup

x∈Ω̃
|φ(x) − φε(x) | ≤

ε
4
. (2.6)
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Repeating (2.2) but with (f − φ) instead of f:

∫
Ω

|φε(x) − fε(x) |p dx ≤
∫
Ω

|φ(x) − f(x) |p dx. (2.7)

Then:

f − fε

p ≤

f − fε

Lp (Ω̃) +

f − fε

Lp (Ω\Ω̃)

≤
f − φ


Lp (Rp ) +

φ − φε

Lp (Ω̃) +

φε − fε

Lp (Rn ) +

ε
4

< ε.

□

With these results, one can already establish the results about the density ofD(Ω) in Lp(Ω).

Theorem 10. D(Ω) is dense in Lp(Ω) with 1 ≤ p < ∞, i.e., for every f ∈ Lp(Ω) and a given ε > 0,

there exists φ ∈ D(Ω) with
f − φ


Lp (Ω) < ε.

Proof. Just as before, star choosing an appropriate Ω̃ ⋐ Ω such that:

∥∥Lp (Ω\Ω̃) ≤
ε
3
,

and define:

g(x) =

f(x), if x ∈ Ω̃,

0, if x ∈ Kn \ Ω̃

Hence by Theorem 9, there exists ε < dist( ˜Ω, 𝜕Ω) such that:

g − gε

Lp (Ω) <

ε
3
.
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Now, since g ≡ 0 inΩ \ Ω̃, then gεLp (Ω\Ω̃) <
ε
3
.

Therefore: f − gε

Lp (Ω) ≤

fLp (Ω\Ω̃) +
gLp (Ω\Ω̃) +

g − gε

Lp (Ω) < ε.

Hence, by Lemma 2, gε ∈ C∞(Kn), and, by the choose of the ε above, gε has compact support inΩ.

□

Now that the fact thatD(Ω) is dense in Lp(Ω), one could ask what happens in the spaceD′(Ω),

i.e., are the regular distributions dense in this space? In fact, this is also true, meaning that test func-

tions can be viewed as a dense subset of both Lp(Ω) andD′(Ω). This means in particular that every

distribution can be approximated by regular ones, justifyingmany of the definitionsmade above such

as the derivatives, coordinate changes, etc.

The proof of this second fact concerning the density of test functions (actually the distributions

induced by these test functions) in the space of distributions, however, requires some more tools. In

particular the definitions of the support of a distribution and the convolution of distributions will be

used.

Definition 28. Let T ∈ D′(Ω), then the support of the distributionT is defined as supp(T) = {x ∈

Ω : There is no neighbourhood of x with T ≡ 0 in this neighbourhood}.

The Definition 28 above may seem a bit strange since distributions are not functions. More pre-

cisely, if f : Rn −→ C is a function, the support of f is supp(f) = {x ∈ Rn : f(x) ≠ 0} andmoreover,

it does make sense to talk about the value of f at a certain point x. In the case of a distribution, it does

not make sense to evaluate T at some point x. Nonetheless, since distributions are linear functionals,

the distribution could be interpreted as having value zero at a setΛwhere it does not do anything, i.e.,

where ⟨T, φ⟩ = 0 for every φ such that supp(φ) ⊆ Λ.

68



It is not very hard to prove that the support of a distribution is a closed set. The following result is

also interesting.

Proposition 9. Let φ ∈ D(Ω) and T ∈ D′(Ω). If supp(φ) ∩ supp(T) = ∅, then T(φ) = 0.

Proof. See [5]. □

In fact, to prove the Proposition 9, [5] uses some interesting results about the local behaviour of

distributions which are very interesting and proven using partitions of the unity.

Now, if T = Tf for some f ∈ L1
Loc(Rn) and φ ∈ D(Rn), then

[f ∗ φ] =
∫
Rn

f(y)φ(x − y) dy.

This fact motivates the following definition:

Definition 29. Let T ∈ D(Rn) and φ ∈ D(Rn). Then the convolution of a distribution with a test

function is defined as

[T ∗ φ] (x) := ⟨T, φx⟩,

where φx : y ↦−→ φ(x − y).

Although distributions are not functions, the convolution of a distribution with a test function is

often written as:

[T ∗ φ] (x) := ⟨T(y), φ(x − y)⟩,

in themeaning that the distributionT acts on the test function y ↦−→ φ(x− y). Sometimes this is also

written as ⟨T, φ(x − ·)⟩ or ⟨Ty, φ(x − y)⟩.

Theorem 11. If T ∈ D′(Rn) and φ ∈ D(Rn), then

1. T ∗ φ ∈ C∞(Rn);
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2. supp(T ∗ ) ⊆ supp(T) ∪ supp();

3. 𝜕α (T ∗ φ) = T ∗ 𝜕αφ = 𝜕α (T) ∗ φ.

Proof. Firstly, it is important to show that T ∗ φ is continuous. Take points x such that x −→ x0. If

|x − x0 | ≤ 1, then y ↦−→ φ(x − y) has its support in a fixed compact set. Moreover:

𝜕αy (φ(x − y) − φ(x0 − y)) x−→x0−−−−−→
unif

0,

where thenotation 𝜕αy simplymeans that themulti-indexderivative is takenwith respect to the variable

y = (y1, . . . , yn). Therefore, φ(x − y) D−−→ φ(x0 − y) as x −→ x0 and, hence:

[T ∗ φ] (x) = ⟨Tyφ(x − y)⟩ x−→x0−−−−−→ ⟨Ty, φ(x0 − y)⟩ = [T ∗ φ] (x0).

Now that the fact that [T ∗ φ] is continuous is proven, in order to prove (2), it suffices to show that

if x ∉ supp(T) ∪ supp(φ), then T ∗ φ(x) = 0. Suppose then that x ∉ supp(φ) ∪ supp(T). Then,

there are no y ∈ supp(T) such that (x − y) ∈ supp(φ) and therefore there is no y with y ∈ supp(T)

and y ∈ supp(φ(x − ·)). Hence, supp(T) ∩ supp(φ) = ∅, which implies that T ∗ φ(x) = 0.

The second equality in (3) can be proved observing that:

𝜕αT ∗ φ(x) = ⟨𝜕αTy, φ(x − y)⟩ = (−1) |α | ⟨Ty, 𝜕
α
y φ(x − y)⟩ = T ∗ (𝜕αφ) (x).

The first equality in (3) however can be proved by induction taking as base case α = (1, 0, . . . , 0) =

e1. Hence, it suffices to show that:

lim
h−→0

1
h
(T ∗ φ(x + he1) − T ∗ φ(x)) = T ∗ 𝜕1φ(x).
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Thus, let

ϕx,h(y) =
1
h
·
(
φ(x + he1 − y) − φ(x − y)

)
.

Then
1
h
·
(
T ∗ φ(x + he1) − T ∗ φ(x)

)
= T

(
ϕx,h

)
However ϕx,h(y)

D−−→ 𝜕φ
𝜕x1 . Therefore:

𝜕α [T ∗ φ] (x) = lim
h−→0

T(ϕx,h) = Ty

(
𝜕φ
𝜕x1

(x − y)
)
= T ∗ 𝜕1φ(x).

Since (1) follows from (3), the theorem is proved. □

Proposition 10. Let T ∈ D′(Rn) and φ, ψ ∈ D(Rn). Then (T ∗ φ) ∗ ψ = T ∗ (φ ∗ ψ).

Proof. Indeed:

T ∗ (φ ∗ ψ)(x) = ⟨Ty, φ ∗ ψ(x − y)⟩ =
〈
Ty,

∫
Rn

φ(x − y − t)ψ(t) dt
〉

★
=

∫
Rn

⟨Ty, φ(x − y − t)⟩ψ(t) dt =
∫
Rn

T ∗ φ(x − t)ψ(t) dt

= (T ∗ φ) ∗ ψ(x)

where the equality (★)must be justified. In fact that result holds and can be proved using approxima-

tions to the Riemann Integral. This is a consequence of the following lemma, which ensures that the

Riemann sums converges inD to the convolution and, hence, (★) is valid. □

Lemma 3. If φ ∈ Cj
c (Rn) and φ ∈ Cc(Rn), then

∑
k∈Zn

φ(x − kh)ψ(kh)hn h−→0−−−−→ φ ∗ ψ(x),
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in Cj
c (and the convergence in C

j
c is defined in the same fashion as theD convergence mutatis mutandis).

Proof. This sum is supported in supp(φ) ∪ supp(ψ). Moreover, the map (x, y) ↦−→ φ(x − y)ψ(y)

is uniformly continuous. Therefore, the Riemann sums converge uniformly to φ ∗ ψ(x). And since

𝜕α (φ ∗ ψ) = 𝜕αφ ∗ ψ for |α| ≤ j, this is also true for the derivatives. □

With these results, the final conclusion about the density of regular distributions in the space of

distributions can be proved:

Theorem 12. Let T ∈ D(Rn) and φε be a mollifier. Then:

T ∗ φε
D′

−−−−→
ε−→0

T.

Proof. Define the function ψ̌ as ψ̌(x) = ψ(−x). Then T(ψ) = T ∗ ψ̌(0). Hence, Proposition 10

implies that

Tε(ψ) = T ∗ φε(ψ) = (T ∗ φε) ∗ ψ̌(0) = T ∗ (φε ∗ ψ̌) (0).

However, φε is a mollifier, and therefore

φε ∗ ψ̌
D−−−−→

ε−→0
ψ̌.

Hence:

lim
ε−→0

Tε(ψ) = lim
ε−→0

T ∗ (φε ∗ ψ̌) (0) = T ∗ ψ̌(0) = T(ψ).

□

Corollary 5. If T ∈ D′(Ω), there are functions Tn inD such that

Tn
D′

−−−−−→
n−→∞

T.
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Proof. Immediate from the previous result given. It suffices to take ε = 1/n at each step. □

This shows once again that the spaces D and D′ are indeed very good in regularity to work on.

In particular, D is dense both in Lp and D′ (of course considering the isomorphism given by the

functions and the induced distributions).
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It is by logic that we prove, but by intuition that we discover.

To know how to criticize is good, to know to create is better.

Henri Poincaré

3
Schwartz Space, Tempered Distributions

And Fourier Transform

The usual Fourier Transform is defined in the space of square-integrable functions, i.e., is a transfor-

mation of the form F : L2(R) ↦−→ L2(R). One might want to do the same with distributions in

the spaceD′ in hopes of extending this concept. However, this does not work immediately.

In a first attempt to define the Fourier Transform of a distribution T ∈ D′, φ ↦−→ T(φ) ∈ K,
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one might assumeK = R and try to use the same formula and, instead of a function with frequency

ω ∈ R, this could lead to a “frequency” that is a test function:

T̂(ψ) = F [T] (ψ) =
∫ ∞

−∞
eiψφT(φ) dφ,

but this is not at all well defined staring with the fact that eiψφ is not a test function inD, so the action

of T on eiψφ is not well defined.

For a second attempt, one could try Parseval’s formula from classical real and complex analysis:

∫ ∞

−∞
f̂(x)g(x) dx =

∫ ∞

−∞
f(x)ĝ(x) dx,

which is a formula that connects the FourierTransformof two functions f and g. Thus, one natural

attempt would be to try to define:

⟨T̂, φ⟩ = ⟨T, ψ̂⟩, φ ∈ D .

However, this does not work as well since the Fourier Transform of a test function may not be a test

function.

The way this is actually done is to enlarge the set of test functions by only requiring that they

have “decay faster then every polynomial at infinity”, which will be made more precise later (they will

also be smooth, but this is just as was before). The distributions will also be different, since they will

be continuous linear functionals defined on this new set. This new type of “test functions” will be

called test functions of rapid decay and the set of those functions the Schwartz Space (S), whilst these

new distributions will be named tempered distributions and form a set S. Since it is obvious that the

compact smooth functions decay faster as one approaches infinity then every polynomial (since these

functions are identically zero outside a compact set), it is immediate thatD ⊆ S, and hence S′ ⊆ D′.
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This may seem confusing but it is logical since a functional that is linear and continuous in a bigger

set will necessarily be linear and continuous in a smaller subset. This restriction is done because as

said before, Fourier Transforms are not defined for every distribution, but, in the space S′ it will be

a linear automorphism, which makes the Schwartz Space a very natural space to work with Fourier

Transforms.

3.1 Schwartz Space And Tempered Distributions:

Before getting into the new concepts, a few notations must be recapitulated.

Denote byΩ ⊂ Rn an open subset. A multi-index α = (α1, . . . , αn) with αi ∈ Z+ will be used for

all 1 ≤ i ≤ n. The order of a multi-index α is |α| = ∑n
i=1 αi.

A few more notation conventions will be used to make the reading more fluid:

• α! = α1 · α2 · · · αn

• xα = xα11 · · · xαnn

• 𝜕α = 𝜕α1x1 · · · 𝜕
αn
xn

The first step is to define this new space of test functions more precisely:

Definition 30. The Schwartz’s Space, S(Rn), is the set of functions f ∈ C∞(Rn) such that:

| |f| |αβ = sup|xα𝜕βf(x) | < Cαβ < ∞,

is valid for every α and β in (Z+)n, where Cαβ is a constant depending on α, β and f.

The above definition may be interpreted as the set of smooth functions of rapid decay, i.e., they

vanish at infinity faster than the reciprocal of any polynomial.
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Example 18. As spoiled before at the beginning of this chapter, the spaceD(Rn) = C∞
c (R) of the usual

test functions (smooth and with compact support) is a subspace of S(R)n. Since those functions vanish

outside a compact (which will be closed and bounded sinceRn here is ametric space in the usual topology),

|xα𝜕βf(x) | will assume a finite maximum inRn (Stone-Weierstrass’s Theorem).

The previous example showed thatD ⊆ S. However, this inclusion is strict, i.e.,D ⊊ S, as shown

in the next example:

Example 19. Take n = 1 and consider the real function f = e−x2 . Note that |xαf(n) (x) | is always of the

form |p(x)e−x2 | with p(x) being a polynomial. Taking the limit as |x| → ∞, this results in 0 and, hence,

f belongs to the Schwartz’s Space. However it is obvious that f is no compactly supported, because f ≠ 0 for

all x ∈ R.

One of the most interesting things about Example 18 is that it implies that S(Rn) is dense in

Lp(Rn), 1 ≤ p < ∞. If one remembers from the last chapter that indeedD is dense inLp, 1 ≤ p < ∞,

this is straightforward. However, this can be proved without that fact. To see why this is the cases, it

suffices to remember that C∞(Rn) is dense in Lp(Rn). However, first of all, it needs to be proven that

this claim in fact makes sense, i.e., thatS(Rn) ⊂ Lp(Rn).

Observation 4. Before proceeding with the reasoning, it is important to make a remark about an-

other characterization of the space S(Rn). Firstly, note that if f is dominated by a polynomial xm =

xm1
1 xm2

2 · · · xmn
n , then, choosing N = max{m1, . . . ,mn}, writing in a abuse of notation xN = xN1 · · · xNn ,

then f is also dominated by xN. Moreover, if N is even, then changing x for |x| will not change anything,

while if N is odd, N + 1 is even and xN+1 dominates xN, and hence dominates f. Hence, another charac-

terization of the Schwartz Space is that |𝜕αf(x) | ≤ CN,α · ( |x|)N for every positive integer N. Moreover,

sometimes is easier for purposes of calculation to state that |𝜕αf(x) | ≤ CN,α · (1 + |x|)N, which does not

change the result.
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Lemma 4. Let 1 ≤ p < ∞. Then, S(Rn) ⊂ Lp(Rn).

Proof. As remarked before, another characterization of S(Rn) is that: |𝜕αf(x) | ≤ CN,α · (1 + |x|)−N,

for N positive integer (also in the abuse of notation, since is a multi-index with n copies of N). It is

possible to take α as the zero vector, i.e., take the module of the function, whichmakes sense since it is

already known that the derivatives go to zero as |x| grows. Hence, if fwas not bounded, it would have

to be unbounded in a region that is not the extremes and thus, its derivatives could not be bounded,

a contradiction. Hence it needs to be verified that f ∈ Lp for 1 ≤ p < ∞:

∫
|f|p ≤ CN+1,0 ·

∫
(1 + |x|)−(N+1)p < ∞.

Since C∞
0 (Rn) is dense in Lp(Rn) and its a subspace of S(Rn), finally it is proven that S(Rn) is

dense in Lp(Rn). It may not be entirely clear, however, why this integral is finite. This is explained in

the following remark. □

Observation 5. It needs to be justified why
∫
(1 + |x|)−(N+1)p < ∞. Indeed, notice that since one is

integrating inRn, by symmetry, it can be seen that this integral coincides with the following integral:

∫
|x | ≥1

1
|x|p(N+1) dx.

In polar coordinates, one has x = rω and dx = rn−1drdω. Hence, the integral in polar coordinates

takes the form: ∫ ∞

1

∫
Sn−1

1
|rω|p(N+1) r

n−1dωdr.

Since |ω| = 1, the integral in ω is a constant and, hence it can be written as:

C ·
∫ ∞

1

1
r p(N+1)−n+1 dr,

78



which its known to converge if p(N + 1) − n + 1 > 1, i.e., N > (n/p) − 1. As N is arbitrary, it suffices to

choose its value properly and this integral will converge.

Now, it is important to define the convergence in this new space.

Definition 31. A sequence of test functions inS, {φk(x)}k∈Z∗+ , is said to converge to φ(x) if and only if

the functions φk and all their derivatives converge to φ and the corresponding derivatives of φ uniformly

with respect to x in every bounded region R inRn. This sometimes is denoted as

φk
S−→ φ.

The above definition implies that the constants Cαβ that occur in Definition 30 can be chosen in-

dependently of x such that

|xα𝜕βφ(x) | < Cαβ

for all values of k. It is not very hard to show that φ ∈ S and, hence, S is closed with respect to this

convergence.

Observation 6. Another way to see that the spaceD is dense in S is to take an arbitrary C∞ function

β(x) that is identically 1 for |x| ≤ 1 and is identically 0 for |x| ≥ 2. This β function can be constructed

with the help of bump functions and its left to think about it. When φ(x) ∈ S, the test functions

φk(x) = β
( x
k

)
φ(x) (k ∈ Z∗+)

are test functions belonging toD and such that the sequence {φk(x)} converges to φ(x) in the sense ofS,

i.e., φk
S−→ φ.

The intuition behind the tempered distributions that will be soon defined are the same as the intu-

ition of the usual distributions as before, i.e., they can sometimes be seen as “generalized functions”,
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but with the remark that this space will bemore restricted as explained in the introduction. TheDelta

distribution is also an example of tempered distribution and its intuition here is the same.

Definition 32. A Tempered Distribution (or sometimes calledDistribution of Slow Growth) its a

continuous linear functional inS(Kn). The set of all tempered distributions is denoted byS′(Kn) and

is sometimes called the Set of Schwartz Distributions.

The following lemma will be used to give another characterization of the convergence in the space

S(Kn).

Lemma 5. Consider a linear functional T : A → C, where A is a vector space. Since C is also a vector

space (over itself), then, for T to be continuous, it suffices that T is continuous at 0 ∈ A.

Proof. Assuming that T is continuous at 0, the goal is to show that T is continuous at every point. In

fact, let v, u ∈ A. Given any ε > 0, one should find δ > 0 such that:

|u − v| < δ ⇒ |T(u) − T(v) | < ε.

Notice that, |T(u) −T(v) | = |T(u− v) − 0| = |T(u− v) −T(0) |, and |u− v| = | (u− v) − 0|. All

those steps before are justified simply by the linearity of T and the fact thatA andC are vector spaces.

Now with that being said, notice that analysing the continuity in v, with u = v + h such that |h| < ε,

is equivalent to analysing the continuity at 0. Hence, it suffices to prove the continuity at 0 to assure

that the described linear functional is continuous at every point. □

A sequence φk
S−→ φ with φ ≡ 0 is called a null sequence. Hence, by Lemma 5, another charac-

terization of tempered distributions can be stated by saying that T ∈ S if and only if

1. ⟨T, c1φ1 + c2φ2⟩ = c1⟨T, φ1⟩ + c2⟨T, φ2⟩,

2. lim
k−→∞

⟨T, φk⟩ = 0 for every null sequence {φk}k∈Z∗+ with φk ∈ S for every k.
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Since by definition it can be seen from the definitions of D-convergence and §-convergence that

a sequence {φk}k∈Z∗+ converging to a function φ in theD-convergence also converges to φ in the S-

convergence. Moreover, since every linear functional onS is also a linear functional onD, thenS′ ⊆

D.

The good thing is that the vast majority of distributions discussed in the previous chapter are also

tempered distributions.

Example 20. As an example of a distribution T ∈ D such that T ∉ S (i.e. a distribution that is not

a tempered distribution) is given by the locally integrable function f(x) = ex2 ∈ D′ (again here is an

abuse of notation, since the distribution itself is Tf). In fact T ∈ D but Tf ∉ S as the reader can verify.

The role played by the locally integrable functions f ∈ L1
Loc(Kn) in D′ completely analogous to

the role played by functions of slow growth f ∈ S in the spaceS′. This result is given in the following

theorem. However, first, just to clarify, the concept of slow growth is used to classify functions in

general, not only test functions and is formalized in the next definition:

Definition 33. A function f, x ↦−→ f(x), defined for x ∈ Rn is called a Function Of Slow Growth if

f, and all of its derivatives, grows at infinity more slowly than some polynomial. That means that there

exists constants C, k and A such that:

|𝜕αf(x) | ≤ C|x|k, |x| > A.

Now, the theorem:

Theorem 13. Every function f(x) of slow growth induces a distribution through the formula:

⟨f, φ⟩ =
∫

fφ dλ, φ ∈ S,

where λ denotes the Lebesgue measure.
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Proof. This operation ⟨f, · ⟩ is clearly a linear functional by the definition of integral. In order to

prove the continuity, one should show that if {φk} is a null-sequence in S, then ⟨f, φk⟩ −→ 0 as

k −→ ∞. Indeed, for each k:

∫
f(x)φk(x) dx =

∫ f(x)
(1 + |x|2)

[
(1 + |x|2)ℓφk(x)

]
dx,

where ℓ ∈ Z+. For a sufficiently large ℓ the factor

f(x)
(1 + |x|2)ℓ

is absolutely integrable, and hence:

����∫ f(x)φk(x) dx
���� ≤ sup( | (1 + |x|2)ℓφk(x) |)

∫ ���� f(x)
(1 + |x|2)ℓ

���� dx.
Notice that the right hand side of the equation above goes to 0 as φk −→ 0. Therefore, ⟨f, φk⟩ −→ 0

for a null sequence {φk}, which proves the continuity. □

An important fact is thatS′ contain some locally integrable functions (actually again the induced

distributions) that are not of slow growth:

Example 21. Consider the function f(x) = [cos(ex)]′ = −ex sin(ex). Then f is clearly a function that

is not of slow growth. Nonetheless, Tf ∈ S′ since:

⟨(cos(ex))′, φ⟩ = −
∫

cos(ex)φ′(x) dx, φ ∈ S.

The same is done to define convergence inS′ as was to define inD′, i.e., as a weak convergence (see

[3], [13]). The definition is given bellow:
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Definition 34. A sequence {Tk} of distributions in S′ is said to converge to T ∈ S′ (a convergence

known as S′-convergence), and denoted by

Tk
S′

−−−−−→
k−→∞

T,

if, for every test function φ ∈ S, ⟨Tk, φ⟩ −→ ⟨T, φ⟩ as k −→ ∞.

From the above definition and the fact that S′ ⊆ D′, it follows that a sequence of tempered

distributions {Tk} converging to a distribution T ∈ S′ converges also in D′ to T, i.e., according to

theD′ convergence.

These last results are summarized in the next theorem:

Theorem 14. The following relations of set inclusion are valid: D ⊆ S and S′ ⊆ D′. Moreover,

D-convergence implies S-convergence and S′- convergence (weak convergence) implies D′-convergence

(weak convergence).

Proof. It is just a sum of a few last results already proven. □

Just as before in the context of test functions, the good thing is that themajority of the distributions

exposed here are in S′. Furthermore, many of the operations defined for distributions inD′ remain

valid inS′ sinceS′ is a subspace ofD′. However, theproblem is that the results of someoperations for

a tempereddistributionmaynot result in a tempereddistribution, and, if the results of someoperation

for tempered distribution produces a tempered distribution, then its said thatS′ is closed under such

an operation.

Example 22. Some operations that remain valid and for whichS′ is closed under are:

1. Addition.

2. ScalarMultiplication.
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3. Linear change of variables.

4. Product of a distribution by a test function.

5. Differentiation.

Example 23. To provide an operation such that S′ is not closed under, consider the multiplication by

a smooth function. Consider the impulse train, which a countable summation of Delta distributions.

Write T(x) and interpret T as a function (like in the introduction of the chapter about distributions):

T(x) =
∞∑
k=1

δ(x − k).

Then, T ∈ S′. However, ex2T(x) is not in S, since, for φ(x) = e−x2 ∈ S, then ⟨φ(x), ex2T(x)⟩ =

1 + 1 + · · · + 1 + · · · , which is obviously divergent. Yet, if one takes φ ∈ D, then

⟨φ(x), ex2T(x)⟩ =
∞∑
k=1

ek
2
φ(k)

is a sum with only a finite number of nonzero terms, and hence, is convergent.

Observation 7. In the next theorem, the concept of convergence in S(Rn) will be used. In particular,

again the convergence to zerowill be used. Remember that in the general case, givena sequence of functions

ϕn em S(Rn), the sequence is said to converge inS to ϕ ∈ S(Rn) if | |ϕ − ϕn | |α,β −→ 0 as n −→ ∞.

In particular, notice that if (ϕn) converges to 0 inS, then (ϕn) must converge to 0 pointwise. At first,

one could think that (ϕn) converges to a constant function. However, since (ϕn) ∈ L1(Rn) it must not be

constant, as it should approach 0 going to infinity.

Theorem 15. Functions f ∈ Lp(Rn) define tempered distributions.

Proof. Given f ∈ Lp(Rn), consider the following functional: Tf : S(Rn) → C given by Tf(ϕ(x)) =∫
Rn

f(x)ϕ(x)dx. Obviously, it is a linear functional by the linearity of the integral. Thus it needs to
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be proven that is continuous. In order to do that, it suffices to prove that it is continuous at 0, since

S(Rn) and C are vector spaces. Hence, notice that if (ϕn(x)) → 0, i.e., (ϕn) converges uniformly to

the identically zero function, then every derivative of ϕn goes to zero. Thus | |ϕn | |α,β → 0. It needs to

be proven that Tf(ϕ(x)) → 0.

However, this is an immediate consequence ofHolder’s Inequality. Let qbe such that 1/p+1/q = 1,

then ϕn ∈ Lq ( its already seen that S(Rn) ⊂ Lq). Moreover, it is already known that ϕn(x) → 0 and

hence | |ϕn | |q → 0. Thus:

����∫
Rn

f(x)ϕn(x)dx
���� ≤ ∫

Rn
|f(x)ϕn(x) |dx ≤ ||f| |p · | |ϕn | |q → 0.

□

In order tomake the notation shorter andmore compact, just as was done in the case ofD, it is use-

ful to identify as f the tempered distribution induced by f ∈ Lp, and write as ⟨f,ϕ⟩ =
∫
Rn

f(x)ϕ(x)dx.

3.2 Fourier Transform

In this second section, the Fourier Transform will be studied and its particularities when restricted to

certain sets such as L1, L2 and S. This study is extremely important to formalized this tool that is so

used in a vast number of areas that concern mathematics, physics and engineering.

Firstly, the Fourier Transform will be studied when applied to functions in L1(Rn). The constant

factor that appears in the transformmay be different and it depends of the area of study and its appli-

cations. In this section, it is chosen to be
( 1
2π

) n
2 .

Definition 35. Let f ∈ L1(Rn). The Fourier Transform of f is a function f̂ = F [f] : Rn −→ C

given by:

F [f] (ξ) = f̂(ξ) =
(
1
2π

) n
2
∫
Rn

f(x) · e−iξ·xdx,
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where ξ · x stands for the canonical dot product inRn.

Theorem 16. If f ∈ L1(Rn), then f̂(ξ) is bounded, continuous and satisfies:

| |̂f| |∞ ≤
(
1
2π

) n
2

| |f| |1.

Proof. Notice that for all ξ ∈ Rn:

|̂f(ξ) | =
(
1
2π

) n
2
����∫
Rn

f(x) · e−iξ·xdx
����

≤
(
1
2π

) n
2
∫
Rn

|f(x) · e−iξ·x |dx

=

(
1
2π

) n
2
∫
Rn

|f(x) |dx

=

(
1
2π

) n
2

| |f| |1

Hence, since this is valid for all ξ, then | |̂f| |∞ ≤
( 1
2π

) n
2 | |f| |1.

In order to prove the continuity, one should show that if ξn → ξ then, f̂(ξn) → f̂(ξ). Indeed, if

ξn → ξ, then it suffices to take the limit in

|̂f(ξ) − f̂(ξn) | =
(
1
2π

) n
2
����∫
Rn

f(x) · (e−iξ·x − e−iξn ·x)dx
���� .

Since limn→∞(e−iξ·x − e−iξn ·x) = 0, and f(x) is bounded almost everywhere, then f̂(ξn) → f̂(ξ). □

Up to now, the Fourier Transform was defined for functions in L1(Rn). However, it is easy to see

that this space is not invariant with respect to this transform, as shown in the next example

Example 24. Consider the characteristic function f = 𝟙[−1,1] of the set [−1, 1]. This function is obviously

integrable, and, therefore, belongs to L1(R). However, it is easy to verify that its Fourier Transform is
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given by:

f̂(ξ) =
(
2
π

) 1
2

· sin(ξ)
ξ

One important remark is that at ξ = 0 one has f̂(0) = 1. Hence, f̂ is well defined, and it is already

known that this transformed function does not belong to L1(R).

Now it is important to see some of the properties of the Fourier Transform when restricted to

S(Rn). One of the main goals is to show that this space is invariant with respect to the Fourier Trans-

form. Moreover a inverse transform can be determined and this will make the Fourier Transform a

linear automorphism when restricted to this space.

Before starting to verify these claims, it is important to establish twoproperties of the FourierTrans-

form in the spaceS(Rn).

Lemma 6. Let f ∈ S(Rn). Then, the following properties hold:

• (𝜕β f̂) (ξ) = (−i) |β |�(xβf)
• ξα f̂(ξ) = (−i) |α | �(𝜕αf)

Proof. The proof will be made specifically to the case n = 1. For the general case, the proof is longer,

but the idea is the same. To prove the first property, it is enough to differentiate the formula for the

transform with respect to ξ, and the result is immediate. During this proof, the normalizing constant

will be leaved out to make the calculations cleaner.

For the second part, integration by parts will be used:

∫
f
′ (x)e−ix·ξdx = f(x)e−ix·ξ

����+∞
−∞

+ iξ ·
∫

f(x)e−ix·ξdx.

Since f belongs to S, it is integrable, and surely goes to 0 as |x| −→ ∞. As the exponential e−ix·ξ is

bounded, the term f(x)e−ix·ξ |+∞−∞ is equal to 0. Hence, it follows that ξ̂f(ξ) = (−i) f̂ ′ . By induction in
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the number of derivatives, the claim follows. □

With these results in hand, it is possible to begin to describe the properties of the FourierTransform

in the spaceS(Rn).

Theorem 17. The space S(Rn) is invariant under the Fourier Transform, i.e., if f ∈ S(Rn), then,

f̂(ξ) ∈ S(Rn).

Proof. Multiplying the two properties established in Lemma 6 and taking the absolute value:

|ξα (𝜕βf̂) (ξ) | · |̂f(ξ) | = |�(xβf) | · |�(𝜕αf) |.
Looking to the right hand side of the equation, notice that, from the relation |𝜕αf(x) | ≤ CN,α · (1 +

|x|)−N, where it is possible to take α as the zero vector (i.e., |f(x) |), and N as any positive integer, it

is possible to conclude that, independently from the chosen β, one has that 𝜕αf(x) and xβf(x) both

belong to L1(Rn). Hence, it is possible to apply Theorem 16, and it leads to the following inequality:

|ξα (𝜕βf̂) (ξ) | · |̂f(ξ) | ≤
(
1
2π

)n
| |𝜕αf(x) | |1 · | |xβf(x) | |1 < ∞.

Since this holds for all ξ ∈ Rn, it follows that | |ξ α (𝜕β f̂ )(ξ) | |α,β ≤ 1
| |̂f(ξ | |∞

·
( 1
2π

)n | |𝜕αf(x) | |1 ·
| |xβf(x) | |1 < ∞. Therefore, f̂(ξ) ∈ S(Rn).

□

Now that it is already proven that S(Rn) is invariant with respect to the Fourier Transform, it is

important to seek for a possible inverse transform when this transform is restricted to S(Rn). The

goal with this is to finally conclude that indeed this mapping is a isomorphism.

The next theorem provides exactly this result and it is known as the Fourier’s Inversion Theorem

for functions restricted to the spaceS. The proof for this theoremwill be done later, after the subject

of convolution is presented.

88



Theorem 18 (Fourier’s Inversion). Let f ∈ S(Rn) and f̂(ξ) be its Fourier Transform. Then,

f(x) =
(
1
2π

) n
2
∫
Rn

f̂(ξ)eiξ·xdξ ∀x ∈ Rn.

Proof. Will be done later, after presenting the convolution. □

It is very interesting to notice the resemblance between the formulas for the Fourier Transform

and its Inverse Transform. The inverse Fourier Transform of a function f(ξ) will be denoted by

F −1 [f] (x) = f̌(x). Observe that f̌(x) = f̂(−x). Moreover, notice that if one has ϕ ∈ S(Rn), then

(ϕ̂)∨ = ϕ = (ϕ̌)∧. This shows that the Fourier Transform restricted to the Schwartz’s Space is an

isomorphism, since one should be aware that it is a bijection, it is continuous and its inverse is also

continuous.

This concludes the subject for the Fourier Transform in L1 and inS. Now, the main focus will be

to develop the theory for the Fourier Transform in L2.

The idea to extend the Fourier Transform to L2 is to use the density of S(Rn) in L2(Rn). There-

fore, it becomes reasonably clearwhat one should try to do. The reasoningwill be to look to sequences

of functions in S converging to functions in L2, and then analyse how the sequence of transforms

behaves. Before beginning theses steps it is important to state an useful lemma which will help devel-

oping this theory.

Lemma 7 (Parseval’s Identity). Let ϕ, ψ ∈ S(Rn). Then,

(ϕ|ψ) =
∫

ϕ(x)ψ(x)dx =
∫

ϕ̂(ξ)ψ̂(ξ)dξ = (ϕ̂|ψ̂).

Proof. In this proof the constant will be omitted to simplify the calculations. By the Inversion For-

89



mula:

(ϕ|ψ) =
∫
Rn

ϕ(x)
∫
Rn

ψ̂(ξ)eiξxdξdx

=
∫
Rn

ψ̂(ξ)
∫
Rn

ϕ(x)e−iξxdxdξ

=
∫
Rn

ϕ̂(ξ)ψ̂(ξ)dξ

= (ϕ̂|ψ̂).

□

Notice that, if one takes ϕ = ψ, then (ϕ|ϕ) = | |ϕ| |22. Hence, by Parseval’s Identity, it is possible

to conclude an interesting property about the Fourier Transform and its relation with the norm in

L2. Indeed, observe that from the Parseval’s Identity one has | |ϕ| |2 = | |ϕ̂| |2, i.e., in the norm of L2,

the Fourier Transform is an isometry. Furthermore, notice that if a sequence of functions in S is

convergent in L2, then the sequence of transforms also converges in L2.

It is already known thatS(Rn) is dense in L2(Rn). Therefore, given f ∈ L2(Rn), then there exists

(ϕn) ⊂ S(Rn) such that | |f − ϕn | |2 → 0 if n → ∞. By Parseval’s Identity, since (ϕn) converges in

L2(Rn), then (ϕ̂n) also converges inL2(Rn), i.e., there existsφ = limk→∞ ϕ̂k inL
2(Rn). It is tempting

to define this limit as f̂. However, extra care must be taken. Since convergence in L2 considers almost

everywhere equivalences, it needs to be verified that φ does not depend on the convergence sequence

that is chosen. Fortunately, this is easy to prove.

Lemma 8. Let (ϕn), (ψn) ⊆ S(Rn) sequences converging to f in L2(Rn). Let Φ = lim ϕ̂n and Ψ =

lim ψ̂n, then | |Φ − Ψ| |2 = 0.

Proof. Due to the convergence hypothesis, it can be seen that, given ε > 0, there exists n0 ∈ Z+ such

that for all n > n0:
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• | |Φ − ϕ̂n | |2 <
ε
3
.

• | |Ψ − ψ̂n | |2 <
ε
3
.

• | |ψ̂n − ϕ̂n | |2 <
ε
3
.

Hence, using the triangle inequality:

| |Φ − Ψ| |2 ≤ ||Φ − ϕ̂n | |2 + ||ψ̂n − ϕ̂n | |2 + ||Ψ − ψ̂n | |2

< ε.

Thus, it is possible to conclude that, in L2, the convergence of the transforms of a sequence that con-

verges to f ∈ L2 is also convergent and is independent of the chosen sequence to approximate. □

Another way to prove the result above would be to consider it as a very particular case of the fol-

lowing theorem:

Theorem 19 (Bounded Linear Transformation (B.L.T.)). Suppose G is a bounded linear transforma-

tion from a normed linear space (V1, ∥·∥V1) to a complete normed linear space (V2, ∥·∥V2). ThenG can

be uniquely extended to a bounded linear transformation G̃ (with the same bound), from the completion

of V1 to (V2, ∥·∥V2).

Proof. See [15]. □

With these facts in hand, the definition of the Fourier Transform in L2 becomes extremely natural.

Furthermore, observe that the isometry property seen in the norm L2 will be valid for all functions in

this case and not only to functions belonging toS ∩ L2.

Definition 36. Let f ∈ L2(Rn). Then its Fourier Transform f̂ is defined as:

f̂ = lim
n→∞

ϕ̂n,
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where (ϕn) is any sequence inS(Rn) converging to f in L2(Rn).

In order to define the inverse transform, it suffices to proceed in an entirely analogous method, i.e.,

take a sequence inS converging to a function g ∈ L2, and then define its Inverse Fourier Transform as

the limit of the inverse transforms of the functions in this sequence. Therefore, the Fourier Transform

in L2, aside from being an isometry, also maintain the property of being an isomorphism.

Finally, the last space for which the Fourier Transform will be defined here is the space S′, i.e., the

space of the continuous linear functionals inS. Tomotivate this definition, consider the following ex-

ample. Let f ∈ L1(Rn). Remembering how f defines a tempered distribution, consider the following

calculation:

⟨̂f,ϕ⟩ =
∫

f̂(ξ)ϕ(ξ)dξ

=
∫

ϕ(ξ)
(∫

f(x)e−iξ·xdx
)
dξ

=
∫

f(x)
(∫

ϕ(ξ)e−iξ·xdξ
)
dx

=
∫

f(x)ϕ̂(x)dx = ⟨f,ϕ̂⟩.

With this example in hand, it can be seen that one has two tempered distributions (one defined by

f and the other by f̂ ) and such that the relation between them is that, applying ϕ ∈ S(Rn) in one, this

leads to the same result if one applies ϕ̂ in the other. Thismotivates a natural definition for the Fourier

Transform for tempered distributions, as can be seen next.

Definition 37. Let T ∈ S′(Rn). The Fourier Transform of T, denoted by T̂, is also a tempered distri-

bution such that:

⟨T̂,ϕ⟩ = ⟨T,ϕ̂⟩ ∀ϕ ∈ S(Rn).

Example 25. The best way to understand what this definition really means is by giving an example. In
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that sense, the classical example of the FourierTransformof theDirac’sDelta suits verywell. This example

is extremely important, since this distribution is present in numerous study areas such as the modeling

of systems in engineering. This last observation about modeling of system is due to, when an extremely

strong action occurs almost instantly, the Dirac’s Delta may be a good easy to describe this phenomenon.

Applying the definition of the Dirac’s Delta centered at 0: ⟨δ,ϕ̂⟩ = ϕ̂(0). By the Inversion Formula,

it is known that

ϕ̂(0) =
(
1
2π

) n
2
∫
Rn

ϕ(x)dx =
〈(

1
2π

) n
2

, ϕ

〉
.

Hence, ⟨δ̂,ϕ⟩ = ⟨
( 1
2π

) n
2 ,ϕ⟩. Therefore one can conclude that the FourierTransform of theDirac’sDelta is

represented by a constant. In this case, accordingly to the definition of Fourier Transform in this chapter,

that constant is
( 1
2π

) n
2 .

Proposition 11. The Fourier Transform defined onS′ also maps to elements inS′ and, furthermore,

it is continuous.

Proof. Let T ∈ S′. The goal is to show that indeed T̂ belongs to S′. By the definition of T̂, one has

that, for all ϕ ∈ S, is true that |⟨T̂,ϕ⟩| = |⟨T,ϕ̂⟩|. Due to the characterization of linear operators inS,

the following inequality holds:

|⟨T̂,ϕ⟩| ≤ C ·
∑

|α | , |β | ≤N
|ξα𝜕βϕ̂(ξ) |.

Now, by theproperties of theFourierTransformpresented inLemma ??, |ξα𝜕βϕ̂(ξ) | = | �𝜕α (xβf(x)) | ≤
| |𝜕α (xβf(x)) | |1. Since the norm L1 of functions in S can be bounded using multi-indices α, β, there

must exist anN′ such that:

|⟨T̂,ϕ⟩| ≤ C ·
∑

|α | , |β | ≤N
|ξα𝜕βϕ̂(ξ) | ≤ C

′ ·
∑

|α | , |β | ≤N′
|xα𝜕βϕ(x) |.
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Therefore, by the description of linear operators inS′, one has that, indeed, T̂ ∈ S′.

In order to prove the continuity, the definition of S′-convergence mus be remembered. This is

done by sequential continuity, i.e., Tn −→ T if, for all ϕ ∈ S, then ⟨Tn,ϕ⟩ −→ ⟨T,ϕ⟩. That being

said, it is easy to verify the continuity of the Fourier Transform in S′. Indeed, let Tn → T, then, for

all ε > 0, there exists n0 ∈ Z+ such that, ∀n > n0 |⟨Tn,ϕ⟩ − ⟨T,ϕ⟩| < ε, for any ϕ ∈ S. Hence,

applying the definition of the transform:

|⟨T̂n,ϕ⟩ − ⟨T̂,ϕ⟩| = |⟨�Tn − T,ϕ⟩|

= |⟨Tn − T,̂ϕ⟩|

= |⟨Tn ,̂ϕ⟩ − ⟨T,̂ϕ⟩| → 0.

□

Therefore, applying the process in an analogous way, it may be verified that the inverse of the trans-

form is also continuous, in a way that the Fourier Transform in S′ is an isomorphism. This is stated

in the next theorem.

Theorem 20. Both the Fourier Transformand the Inverse Fourier Transformdefined onS′maps to ele-

ments inS′ and, furthermore, both are continuous. Therefore, the Fourier Transform is an isomorphism

inS′.

Proof. This is just a synthesis of the previous results. □

3.3 Convolution

The convolution here is defined the same way as it was in the previous chapter. One of the main goals

is, as said in the last section, to prove the Fourier Inversion Formula.
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Just to recapitulate, for two functions f and gwithRn as domain, the convolution between f and g

is defined as

(f ∗ g)(x) =
∫
Rn

f(x − y)g(y)dy,

whenever this integral makes sense.

Now, some important properties of the convolution operation will be stated. In particular, a fun-

damental property in the theory of differential equations will be proved, the Smoothing Property. In

general lines, the convolution operation can return a function that is more “regular”. For example, if

both f and g and their respective derivatives are in L1, then the second derivative of their convolution

lies in L1. It will be seen the case of the convolution of a smooth function with a function in L1.

Proposition 12. The following properties hold for the convolution:

1. (f ∗ g) (x) = (g ∗ f) (x).

2. If f and g ∈ L1(Rn), then | | (f ∗ g) | |1 ≤ ||f| |1 · | |g| |1.

3. Let f and g be compactly supported functions. Then (f∗g) has compact support and supp(f ∗g) ⊂

{w + y : w ∈ supp(f), y ∈ supp(g)}.

4. If f ∈ Ck
c (Rn) and g ∈ L1(Rn) then, (f ∗ g) ∈ Ck(Rn).

Proof.

1. It suffices to make a chance of variables z = x − y. Indeed:

(f ∗ g) (x) =
∫
Rn

f(x − y)g(y)dy = −
∫
Rn

f(z)g(x − z) (−1)dz = (g ∗ f)(x).
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2.

| | (f ∗ g) | |1 =
∫
Rn

����∫
Rn

f(x − y)g(y)dy
���� dx

≤
∫
Rn

∫
Rn

|f(x − y) | |g(y) |dxdy

= | |f| |1 · | |g| |1.

3. Notice that, under the conditions in this item (f ∗ g) (x) =
∫
Rn

f(x− y)g(y)dy is not identically

zero only if y ∈ supp(g) e x − y = w ∈ supp(f). Then, it is possible that (f ∗ g) (x) ≠ 0 if

x = w + y, proving, therefore, that the support of the convolution is contained in the union of

the supports of f and g.

4. This last property is basically application of the Lebesgue Dominated Convergence Theorem

(see [2]). In fact, what should be proved is that, for functions satisfying the conditions enunci-

ated, it holds that: 𝜕x1 (f∗ g)(x) = (𝜕x1f∗ g) (x). It suffices to show that for only one derivative,

since the general case follows from mathematical induction. In order to prove that, consider

the following calculations:

𝜕x1 (f ∗ g)(x) = lim
h→0

∫
Rn

f(x + he1 − y) − f(x − y)
h

g(y)dy.

To switch the positions of the limit and the integral, it needs to be shown that the integrand

is dominated by an integrable function. Indeed, since f has compact support, it is known that

its derivative is limited with an upperbound M. Moreover, it is also known that, since g is

integrable, the integrand is indeed dominated byM|g(y0) | and, thus, integrable. Hence, by

the Lebesgue Dominated Convergence Theorem, the integral and the limit can switch places

and the desired result follows, 𝜕x1 (f ∗ g) (x) = (𝜕x1f ∗ g) (x).
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□

In the first proposition, a very shallow characterizationwas established for the relationship between

the spaces in which f and g lie and the space in which the convolution lies. In fact, a basic relation was

shown, i.e., the fact that if f and g both lie in L1, then the convolution also lies in L1. However there

exists a much stronger result than that, known as the Young’s Inequality For The Convolution. This

result will be presented now, but is proof will only be done in Section A.1. The proof for this result

uses theRiesz-Thorin’s Interpolation Theorem, which will be the central subject of Section A.1. More

about this can be seen in [6].

Proposition 13. Let f ∈ Lp and g ∈ Lq. Also, let r be such that 1 + 1
r =

1
p +

1
q , then, Young’s Inequality

holds: | |f ∗ g| |r ≤ ||f| |p · | |g| |q. In particular, if p and q are conjugate, i.e., p−1 + q−1 = 1 then f ∗ g is

bounded (due to Young’s Inequality), uniformly continuous and, if 1 < p, q < ∞, then f ∗ g ∈ C0(Rn),

i.e., decreases to zero approaching infinity.

Proof. The proof of Young’s Inequality will be done in Section A.1. If p or q are equal to 1, then

the conjugate is equal to infinity, and r will also be infinity. The uniform continuity follows from

the continuity of the translation in Lp (Lebesgue measure is invariant under translations). Since the

same property will appear in themost interesting case, i.e., when p and q are both different from 1 and

infinity, this second part will be proved.

Uniform continuity: Let f ∈ Lp and g ∈ Lq with p and q conjugate. Then:

|f ∗ g(x + h) − f ∗ g(x) | ≤ | |f(x + h − y) − f(x − y) | |p · | |g| |q.

Since translation in Lp is continuous (it suffices to prove this for characteristic functions, then extend

by linearity to simple functions and apply a density argument), then |f ∗ g(x + h) − f ∗ g(x) | → 0 if

h → 0 and, thus, the result follows since this does not depend on x.
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Decreasing at infinity: As seen before, the class of continuous functions with compact support is

dense in Lp. Therefore, given ε > 0, choose f̃ ∈ C∞
c such that

| |f − f̃| |p <
ε

2| |g| |q
,

and, in an analogous procedure, choose g̃ ∈ C∞
c such that

| |g − g̃| |q <
ε

2| |̃f| |p
.

Using the equality

f ∗ g(x) = (f − f̃) ∗ g(x) + f̃ ∗ (g − g̃) (x) + f̃ ∗ g̃(x),

then using the Triangle and Young’s Inequalities (r equal to infinity):

|f ∗ g(x) | ≤ | |f − f̃| |p · | |g| |q + | |̃f| |p · | |g − g̃| |q + |̃f ∗ g̃(x) |

< ε + |̃f ∗ g̃(x) |.

Since f̃, g̃ are compactly supported, then Proposition 12 implies that the convolution is also com-

pactly supported. Therefore, there exists a compact set K such that, outside K, f ∗ g(x) is less than ε,

which characterizes the decrease to 0 at infinity. □

Now that the fundamental property of smoothing for the convolution has been presented, it is

important to recall some facts about mollifiers also called approximations to the identity (see Chapter

2). Remember that the idea here is to find a sequence of functions with “good regularity” (in fact

here C∞) that converge to the original function f for the problem. The motivation here is to present

a convolution with the Dirac’s Delta. Indeed, considering the Delta as a singular measure, it means
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that
∫
f(x − y)dδ(y) =

∫
f(x − y)δ(y)dy = f(x). The goal is to find a sequence of functions that

approximate the Delta in terms of convolution.

It is important to also recall fromChapter 2 that a useful type of functions to be used in the identity

approximations are the bump functions.

Example 26. Let φ ∈ L1(Rn). Define φt(x) =
1
tn
φ

(x
t

)
for t > 0. Then,

• Assuming y =
x
t
:

∫
Rn

φt(x)dx =
∫
Rn

1
tn
φ

(x
t

)
dx

=
∫
Rn

φ(y)dy

• Notice that if φ(x) has compact support, then φt(x) also has compact support, and, as t decreases,

this support also decreases.

With that being said, themain theoremabout identity approximationsmaybe stated. This theorem

has two versions, that will be called the “weak version” and the “strong version”.

Theorem 21. Let φ ∈ L1(Rn) and
∫
Rn

φ(x)dx = 1, then:

1. Weak Version: If f ∈ Lp(Rn) for 1 ≤ p < ∞, then f ∗ φt → f in Lp(Rn) when t → 0.

2. Strong Version: If there exists C, ε > 0 such that

φ(x) ≤ C
(1 + |x|)n+ε ,

then f ∗ φt → f almost everywhere (a.e.).
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Proof. 1. Taking y = tω, then:

(∫
Rn

��f(x) − f ∗ φt(x)
��p dx) 1

p

=

(∫
Rn

����∫
Rn
(f(x) − f(x − y))φt(y)dy

����p dx) 1
p

=

(∫
Rn

����∫
Rn
(f(x) − f(x − tω))φ(ω)dω

����p dx) 1
p

and, using Minkowski’s Ineuality,

≤
∫
Rn

(∫
Rn

|f(x) − f(x − tω) |pdx
) 1

p

φ(ω)dω

= | |f(x) − f(x − tω) | |p.

Recalling that the translations are continuous in Lp, taking t → 0 the result follows.

2. In order to prove the a.e. convergence, consider:

|f − f ∗ φt | =
����∫
Rn
(f(x) − f(x − tω))φ(ω)dω

����
≤

∫
Rn

| (f(x) − f(x − tω))φ(ω) |dω

≤
∫
Rn

| (f(x) − f(x − tω)) |
���� C
(1 + |x|)n+ε

���� dω.
Since

C
(1 + |x|)n+ε belongs to L

q with q−1 + p−1 = 1, Holder’s Inequality implies that

|f − f ∗ φt | ≤ C′ | |f(x) − f(x − tω) | |p,

and, using the continuity of translations in Lp the proof is done.

□

One interesting fact about mollifiers is that using them, it is possible to obtain a sequence of func-
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tions with “good regularity”, since there exists sequences of C∞ functions that converge to the desired

function.

Finally, in this section of convolution, one important result still remains to be proved: the Fourier

Inverse Transform Theorem. The proof was left to be done here because it becomes much simpler.

During the proof, some basic properties and calculations concerning Fourier Transform will be used

and are presented in the next proposition.

Proposition 14.

• If, by the Fourier Transform, f(x) → f̂(ξ), then eiyxf(x) → f̂(ξ − y).

• If y(x) = e
−|x|2
2 , then ŷ = y and

∫
y(x)dx = (2π) n

2 .

Proof. See [13] or another reference with Fourier Transforms Tables. □

With this properties in hand, and some important facts about the mollifiers revisited, it will be

possible to prove the Fourier Inverse Transform Theorem wich will be restated here.

Theorem 22 (Fourier Inversion). Let f(x) and f̂(ξ) be functions inL1(Rn). Then:

f(x) =
(
1
2π

) n
2
∫
Rn

f̂(ξ)eix·ξdξ.

Proof. First, define φ(ξ) = eiξx · e−t2
|ξ|2
2 . Calculating the Fourier Transform of this function:

φ̂(y) =
(
1
2π

) n
2
∫
Rn

eiξx · e−t2
|ξ|2
2 · e−iξydξ
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and, making tξ = k,

φ̂(y) =
(
1
2π

) n
2
(
1
tn

) ∫
Rn

eik
x
t · e−

|k|2
2 · e−ik

y
t dk

=

(
1
tn

)
e−

|x−y|2
2t2 .

The properties of Proposition 14 were used. Notice that the Fourier Transform of the function φ can

be seen as a certain gt(x−y) inwhich g(x) = e−
|x|2
2 in the sense thatwas defined for the approximations

of the identity. Moreover, also by Proposition 14, it is known that
∫

gt(x − y)dy =
∫

g(y)dy =

(2π) n
2 .

It was seen in the study of the Fourier Transform that, for functions in L1, the following identity

holds:
∫

fφ̂ =
∫

f̂φ. Using this and denoting by ht(x − y) =
gt(x − y)
(2π) n

2
, this leads to:

(
1
2π

) n
2
∫
Rn

e−t
2 |ξ|2

2 f̂(ξ)eiξxdξ =
∫
Rn

ht(x − y)f(y)dy

= (ht ∗ f) (x).

Applying the limit as t −→ 0, by the LebesgueDominatedConvergenceTheorem, (that can in fact

be used here since all the functions are integrable), the left hand side goes to
(
1
2π

) n
2
∫
Rn

f̂(ξ)eix·ξdξ,

and the right hand side to f(x) by Theorem 21 (the results about mollifiers). Hence, the theorem is

proved. □
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It’s fine to celebrate success, but it’s more important to heed

the lessons of failure.

Bill Gates

4
Wavelets andWavelet Transform

The goal of this chapter is to construct the theory of wavelets and theWavelet Transform, comparing

it with the Fourier Transform pointing out the advantages and the disadvantages of each theory. A

relationwith distribution theorywill be established and, at the end, an application in signal processing

will be presented concerning different frequency analysis methods applied to a chirp signal with high

frequency interjections.
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4.1 Introduction ToWavelets And The Short Time Fourier Transform

The usual Fourier Transform (FT) is defined for some “well behaved” functions. Here, the concern

will be with maps f : R→ R. The FT can be defined (here the definition will be not normalized as it

is more usual in the context of signal processing) as follows (see Chapter 3 for details in discussion):

f̂(ω) = F [f] (ω) =
∫ ∞

−∞
f(t)e−iωt dt

The Inverse Fourier Transform (IFT) on the other hand is given by

f(t) = F −1 [f̂] (t) = 1
2π

∫ ∞

−∞
f̂(ω)eiωt dω

It is alsoworth recall that the FourierTransformhas also a discrete form, theDiscrete FourierTrans-

form (DFT). In fact, given a sequence f[n] whose series is absolutely convergent, one can define is FT

by

f̂(ω) = F [f] (ω) =
∞∑
−∞

f[n] · eiωn,

and its Inverse Discrete Fourier Transform (IDFT) is given by:

f[n] = F −1 [f] (t) = 1
2π

∫
T=2π

f̂(ω) · eiωn dω,

where one must remember that the frequency function is over the reals (the time is discrete, not the

frequency).

The important aspects to recall here is that the FT gives frequency information about a signal,

representing its frequency components and their respective magnitude. Therefore, it is usual to say

that the FT has perfect frequency resolution. However, FT does not provide any time information
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as to when those frequencies exist and, therefore, the FT has zero time resolution. Hence, FT is a

perfect tool for stationary signals, i.e., signals that do not change with time.

To illustrate this situation, Figure 4.1 bellow shows two different signals in time that have the same

FT.

[a]

1 2 3 4

−1

−0.5

0.5

1

[b]

2 4 6 8 10 12 14 16

−1

−0.5

0.5

1

Figure 4.1: Two distinct signals in time that have the same Fourier Transform. In subfigure [a], the signal is given by the
superposition of all four signals that appear in the plot, whist in subfigure [b], the signal is given by the concatenation of
the four signals.

To remedy this situation for signals that do change with time, sometimes the Short-Time Fourier

Transform (STFT) is used. The idea of STFT is to imagine that some portion of the non-stationary

signal is stationary. The STFT can be defined under the same conditions as the FT, and the central

concept is to apply the FT for each stationary portion along the signal and add all of them up.

To be more precise, in the STFT, the original function is multiplied by awindow function (that

is simply the characteristic function of some finite interval†) with some fixed length and the FT is

taken with respect to this product. This will be done as the window function moves along the real

line, taking the FT at each stationary section. Hence, the STFT will be defined as:

f̂(τ, ω) =
∫ ∞

−∞
f(t)w(t − τ)e−iωt dt,

†There are other possibilities to consider for the window function, but this is usually the easiest to define.
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where w denotes the window function and τ is the translational parameter. The conditions for the

FT are sufficient to define the STFT because the STFT is essentially the FT defined to the product

of the function by the window function. However, due to the parameter τ, the STFT provides some

time localization.

Hence, the STFT can be visualized in a three dimensional graphic, where one axis denotes the

magnitude, and the other two denote time and frequency.

It is clear from the definition that the STFT carries both uncertainty in time and in frequency.

Therefore, there is some resolution in time at a cost of losing precise resolution at frequency. Conse-

quently, with the STFT it is impossible to know what frequencies exists at what time instance and it

is only possible to know what frequency bands exists at time intervals. This is again a manifestation

of the uncertainty principle (which will be explained in more detail in the following chapters), where

an lower bound is in some sense (which will be made more precisely later) given by

ΔtΔf ≥ 1
4π

.

One limitation of the STFT is that the length of the window function is fixed and, therefore, so are

both the time and frequency resolutions for the entire signal. This can be visualized in a grid (some-

thing that will be very useful to understand another tools to be presented ahead), and it is illustrated

in Figure 4.2 bellow.
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Time

Frequency

Figure 4.2: Grid in time‐frequency domain for the Short Time Fourier Transform.

In the Grid of Figure 4.2 above, a narrow window means good time resolution to the detriment

of frequency resolution, while a wide window means bad time resolution to provide good frequency

resolution.

The fixed resolution in the time-frequency domain is a often a problem considering that low fre-

quency components of a signal sometimes last long periods of time, requiring a high frequency resolu-

tion. On the other hand, high frequency components sometimes appear as short outbreaks, requiring

higher time resolution.

The techniques inMultiresolution Analysis andWavelet Transforms comes in the urge to remedy

this situation. More precisely, the fundamental idea is to analyze a signal into its different frequen-

cies at many distinct resolutions. Hence, the time-frequency domain must be partitioned in different

resolutions, for example as illustrated in Figure 4.3 bellow.
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Time

Frequency

Figure 4.3: Grid in time‐frequency domain for the idea of a multiresolution analysis.

The idea shown in Figure 4.3 illustrates a way to solve some of the problems previously discussed,

i.e., at high frequencies, there is a good time resolution (at a cost of bad frequency resolution). Like-

wise, at low frequencies, there is good frequency resolution (at a cost of bad time resolution).

One important insight here is that classical Fourier analysis deals with waves that are infinite. In

fact, the complex exponential is a sum of a cosine and a sine. Both these waves (or this one wave if one

wants to consider sine as a translation of cosine) have unlimited support in the time domain and they

provide, via Fourier Transform, exact frequency resolution. The idea then is to search of a trade off

relationship between time resolution and frequency resolution and one idea to start that process is to

consider a small wave, the so called wavelets†.

Definition 38. A wavelet is a piece-wise continuous function that has arbitrarily small spectral power

†The term wavelet is an English word created to adapt the original french word “ondelete”, which means
small wave.
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outside a sufficiently large interval and its not the zero function (for the discrete case, this will also be the

case taking the discrete topology).‡

Therefore, wavelets can be viewed as a “brief oscillation”. Some examples are depicted in Figure 4.4

bellow.

Figure 4.4: Some types of real wavelets with their respective names, generated on MATLAB. They were generated with
the parameters wavefun(’morl’,8); wavefun(’mexh’,10); wavefun(’db1’,10); wavefun(’coif4’,10); respectively

Someof theWavelets depicted inFigure 4.4 above are actually complex functions, as the exemplified

‡Some authors define wavelets as compactly supported functions. However, some of the most used types
of this functions in signal processing, data processing and telecommunications are not compactly supported.
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next.

Example 27. The Complex Morlet Wavelet is a functionΨ : R −→ C that can be defined as:

Ψ(t) = 1√
π · fb

· exp
(
2πi · fc · t

)
· exp

(
−t2
fb

)
,

where fb is the time-decay parameter and fc the center frequency. This function can be visualized in

Figure 4.5 bellow.

Figure 4.5: Complex Morlet Wavelet plotted in MATLAB. The command is [psi, x]=cmorwavf(Lb, Ub, N, fb, fc); with pa‐
rameters N=1000; Lb=‐8; Ub=8; fb=3; fc=1;, where “fb” is the time‐decay parameter, “fc” is the center frequency,

General Morlet wavelets can be defined by Gaussian probability distributions, and are composed by

a complex exponential, known as the carrier, and a GaussianWindow, known as the envelope.
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Definition 39. Given a particular wavelet ψ : R −→ C, it is possible to define its Family ofWavelets

that are the set of wavelets defined as translations and compressions of the original wavelet. The original

wavelet ψ : R −→ C is known as theMotherWavelet. The other wavelets are defined as

ψa,b =
1
√
a
ψ

(
t − b
a

)
,

for a > 0 and b ∈ R.

The (Continuous) Wavelet Transform (WT) can then be defined, given a mother wavelet ψ :

R −→ C and a function f : R −→ C, for all the set of the family as:

Wψ [f] (a, b) = ⟨ f, ψa,b⟩ =
∫
R

f(t) · ψ∗a,b(t) dt,

where the symbol (∗) denotes the complex conjugate of the function, i.e., ψ∗a,b(t) = ψa,b(t). Hence,

the wavelet transform is given by the standard inner product in L2(R) of the function f against the

members ψa,b of the family of the mother wavelet ψ.

The idea in thewavelet transform is that thewavelets are the newbasis functions instead of complex

exponentials (or sine and cosine). However, the wavelets in the family can be translated and scaled.

This is important because wide wavelets are better to resolve low frequency components of the signal

with bad time resolution, whilst shrunken wavelets are better to resolve high frequency components

of the signal with good resolution.

The Inverse Wavelet Transform (IWT) and the Discrete Wavelet Transform (DWT) are a bit more

complicated and will be treated in the next sections.

To illustrate the use of the WT in signal processing, the next section will be dedicated to give an

example of analysis with some of the tools mentioned in this section before the formal treatment is

given in the last sections.
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4.2 Applications to Signal Processing

In this section, some of the tools presented in the former section, namely the STFT and theWT, will

be used to analyse a particular signal with some specific characteristics and illustrate the advantages

and disadvantages of each one.

For that matter, consider a signal (with some very quirk features) displayed in Figure 4.6 bellow.

Figure 4.6: Chirp signal with high frequency interjections.

This particular signal would be very difficult to analyse by standard methods as the usual FT. His

frequencies varies along time in a very perceptible way and it has sharp edges, which gives more high

frequency components to the signal. Hence, in order to obtain themaximum amount of information

of the signal, the information with the analysis via STFT andWTwill be compared.
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As an important observation, since this is done in a computer program, everythingwill be in essence

discrete: the signal, the integrals, the window functions, etc. However, some interpolation is done in

the graphics to simulate the continuous case of the STFT and WT. Hence, the size of the window

function will be given in term of samples.

Firstly, it is important to compare two diferent STFT’s that differ based on the size of the window

function. This can be viewed in Figure 4.7, for a window function size 8, and Figure 4.8 for a window

function size 256.

Figure 4.7: Short Time Fourier Transform of the signal with window size 8.
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Figure 4.8: Short Time Fourier Transform of the signal with window size 256.

The difference in this images is very clear. Note how in Figure 4.7 the time resolution is much

smaller, but at a cost of having a much worse frequency resolution compared with Figure 4.8. Note

how individually this single figures do not provide all the important information about the signal. For

example, the high frequency components at sharp edges are almost to detect in time impossible to see

in Figure 4.8, whist in Figure 4.7 there is a time information about when these high frequency bursts

occur, despite having low information about what are really the frequency components involved.

To remedy this situation, the WT was presented in the previous section. Figure 4.9 ahead shows

theWT for the signal that its been analyzed.
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Figure 4.9: Wavelet Transform of the signal

Recall that the WT of a signal fwith respect to a mother wavelet ψ is given by:

Wψ [f] (a, b) =
∫
R

f(t) · ψ∗a,b(t) dt,

where

ψa,b =
1
√
a
ψ

(
t − b
a

)
.

Hence, a is the scaling parameter and the time-frequency domain illustrated in Figure 4.3 is vary-

ing vertically with the parameter a. Also, it is important to emphasize that the goal of the wavelet

transform is to have high time resolution for high frequencies and high frequency resolution for low
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frequencies. Figure 4.9 shows for low values of frequencies with a high time resolution at the lower

part. It is important to note that the vertical axis relates the inverse of the frequency, hence given in

seconds.

After seeing the information given in Figures 4.7, 4.8 and 4.9, it is straightforward that the WT

provides muchmore information than the classical STFT for theses types of signals with sharp edges,

frequency bursts and frequency variations.

The codes in Python Language to generate these figures and the signal transforms can be found in

Appendix B.

4.3 Background For More Rigorous Formulation Of The Wavelet Trans-

form

Many of the concepts here are just a review of the concepts developed in the context of Chapter 1.

Recall that a Banach Space is a normed vector space X over a fieldK with norm ∥·∥ such that X is

complete with respect to this norm (everyCauchy sequence inX converges inX), and the convergence

is taken with respect to the distance dX induced by this norm such that dX(x1, x2) = ∥x1 − x2∥. With

these tools, it is possible to define infinite linear combinations (infinite sums) by limits:

∞∑
n==1

xn = lim
n−→∞

n∑
k=1

xk.

A Schauder Basis for a Banach Space Xwill be a countable sequence (en)∞n=1 of elements of X such

that every element x ∈ X can be uniquely expressed as a infinite linear combination

x =
∞∑
n=1

an · en,

for appropriate coefficients an ∈ K.
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Recall that, given a non empty vector space V over a field KV, then a set β of elements of V is a

Hamel basis in V if β is linearly independent and given any element v ∈ V, then there exists a finite

subset F such that is possible to write in a uniquely way:

∑
k∈F

akxk,

where ak ∈ KV and xk ∈ β for every k ∈ F. The existence ofHamel basis is ensured by Zorn’s Lemma.

Moreover, given any linearly independent set α, there exists a Hamel basis β such that α ⊆ β.

Schauder basis differ fromHamel basis and they do not coincide in general. If fact, it is only when

one has good enough topology that is possible to talk about Schauder Basis. By these definitions the

span with respect to a Schauder Basis and a Hamel basis can be different. This is because Schauder

independence is stronger than Hamel independence.

Hence, every space has a Hamel basis, but in fact, not every space has a Schauder basis. Moreover,

the basis in the case of Schauder must be ordered, since unconditional convergence is not guaranteed

in general.

Example 28. The sequence spaces ℓp with 1 ≤ p < ∞ and c0 have as canonical basis (en)∞n=1 with the

elements given by:

en = (δnk)∞k=1.

In fact, every Banach Space with a Schauder basis is separable, but the converse is not true. Even a

smaller class of Banach spaces has unconditional basis.

The situation turns out to be a lot more well behaved when the space is a inner product space with

some “additional compatibility”. Indeed, every vector space over an infinite ordered field (because, for

example, finite fields are not ordered and therefore would violate the positive-definiteness of the inner

product) admits an inner product. The restriction to work in Hilbert Spaces is a good way to remedy
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this situation.

Recall that a Hilbert Space is an inner product space (H, ⟨·, ·⟩) which is complete with respect to

the norm ∥x∥ =
√
⟨x, x⟩ (and therefore a Banach space with respect to this norm). It is important to

remember that every Hilbert SpaceH has an orthonormal basis in a sense involving convergence (see

Chapter 1), whichwill be amaximal (with respect to the canonical subset ordering) orthogonal subset

β ⊆ H (a Hilbert basis). The most important examples here will be the spaces L2([0, 1]) and L2(Rn)

with the canonical inner product:

⟨f, g⟩ =
∫
H
f · g dλ,

where λ is the Lebesgue measure.

Then, given a Hilbert basis β forH, every element x ∈ H can be written as:

x =
∑
b∈β

⟨x, b⟩b,

where is understood that there are at most a countable collection of nonzero terms and for any enu-

meration {b ∈ β : ⟨x, b⟩ ≠ 0} = {b1, . . . } of nonzero elements:

x = lim
n−→∞

n∑
j=1

⟨x, bj⟩bj.

Hence, the norm can be represented as:

∥x∥ =
√∑

b∈β
|⟨x, b⟩|2

Consider nowC-vector spaces. The space L2([0, 1]) has then a canonical basis {en}n∈Z given by

en(t) = e2πint.
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Hence, every f ∈ H = L2( [0, 1]) can be written as

f =
∑
n∈Z

⟨ f, en⟩en,

where the convergence with respect to the L2-norm. This is the Fourier series constructed in Chapter

1. It is usual to write

f̂(n) = ⟨f, en⟩ =
∫ 1

0
f(t) · e−2πint dt.

The partial symmetrical sums will be denoted by

Snf(t) =
n∑

k=−n
f̂(k)e2πikt.

Hence, these partial sums approximate any function f ∈ L2( [0, 1]):

lim
n−→∞

f − Snf

2 = 0.

However, it is worth remember that almost everywhere convergence (a.e.-convergence) implies Lp-

convergence, and in fact, Calerson-Hunt’s Theorem states that

Snf(t) =
n∑

k=−n
f̂(k)e2πikt a.e.−−−−−→

n−→∞
f(t),

for every periodic function in Lp, 1 < p < ∞ (in this context, Lp( [0, 1])). Hence, the exponential

form a Schauder basis for Lp( [0, 1]), 1 < p < ∞.

In the case of p = 1, the exponentials en do not form a basis for L1([0, 1]) −→ K or for the space

C([0, 1]) of continuous functions on the interval with the supremum norm. Nonetheless, given

f ∈ L1( [0, 1]), there is enough information in the Fourier coefficients (f̂(n))n∈Z to reconstruct the
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function f. The real difficulty is know if a given sequence (bn)n∈Z is the sequence of some unknown

function g ∈ L1([0, 1]).

The basis composed by the exponential functions is indeed canonical and very good basis to deal

with (see Chapter 1). One common way to try to justify this choice is that the complex exponentials

are “eigenvectors” for the differential operator d
dt . However, this may lead to a problem both because

this operator is not defined in all L2([0, 1]) and because there are other “eigenvectors”, for example

ez(t) = e2πizt for z ∈ C \ R.

One way to try to bypass this situation is to argue that actually that the right context to work with

this tools is to deal with periodic functions with unitary period (1-periodic). Hence, given a function

f̃ ∈ L2( [0, 1]) (that is defined only in [0, 1]), it is natural to extend f̃ to a function f defined on all R

by discarding the value at 1 or 0 and putting f(t) = f̃(t − ⌊t⌋). Hence, the natural basis elements for

the Fourier series, en, are 1-periodic and “eigenvalues” of the differentiation.

Another way to bypass this is to argue that actually one is dealing with functions defined on the

unit circle S1 = T since T can be expressed as T = {e2πit : t ∈ R} = {e2πit : t ∈ [0, 1)} and then

the en would be viewed as unitary irreducible representations of T. However, this is a very particular

case of the Fourier Analysis on topological groups done in Chapter 1, where was considered the case

for L2(G) andG is a locally compact abelian group. The space L2 is defined with respect to the Haar

measure onG (and normalized to give a probability in the casewhereG is compact). Then, the general

Fourier Series of f ∈ L2(G) will be indexed by the set of characters in Ĝ.

Throughout the next discussion, where the goal is to recall the definition of Fourier Transforms for

this context, it is actually useful to consider, even though the context is ofC-valued vector spaces, that

a function f ∈ L2 that is gonna be represented is real valued. This is just to simplify the calculations.

The results in the parts where this is done can be reformulated considering the real and imaginary part

and the result follows from linearity.

Next, one may consider Fourier Series defined on general intervals [a, b], a < b ∈ R. This can be
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simply done by a translational operator that does a change of variables:

Ta,b : L2([0, 1]) −→ L2( [a, b])

f ↦−→fa,b : [0, 1] −→ [a, b]

s ↦−→ 1
√
b − a

f
( s − a
b − a

)
.

Indeed,Ta,b is an isometry andhence preserves inner product, which enables to transfer the Fourier

Series from one interval to another.

Now, if [a, b] = [−T,T], T ∈ R∗+, then given any f ∈ L2([−T,T]),

f(t) =
∑
n∈Z

f̂(n)
(
(−1)n
√
2T

exp

(
2πint
2T

))
,

where f̂(n) is given by

f̂(n) = (−1)n
√
2T

∫ T

−T
f(t) exp

(
−2πint
2T

)
dt

Hence, these last two relations lead to the Fourier Series explicitly in terms of f:

f(t) =
∑
n∈Z

1
2T

(∫ T

−T
f(x) exp

(
−2πinx
2T

)
dx

)
exp

(
2πint
2T

)
,

where the variable xdoes not change anything andwas introduced just to avoid repetition on t. Hence,

if f is a function with compact support in L2(R), there is a sufficiently large value of T such that:

f(t) =
∑
n∈Z

1
2T

(∫ ∞

−∞
f(x) exp

(
−2πinx
2T

)
dx

)
exp

(
2πint
2T

)
.
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Now define the function f̂ = F [f] by:

f̂(ω) = F [f] (ω) =
∫ ∞

−∞
f(t)e−2πiωt dt.

Note that there is a factor 2π in the exponential, which is different from what was presented at Sec-

tion 4.1, but this does not affect the general results and is just a convention to consider, for example,

characters in the unity circle T. Hence:

f(t) =
∑
n∈Z

1
2T

F [f]
( n
2T

)
exp

(
2πint
2T

)
=

∑
n∈Z

1
2T

f̂
( n
2T

)
exp

(
2πint
2T

)
.

Considering this as a Riemann (or Stieltjes if one wants a bit more generality) sum approximating the

integral and taking the limit for T −→ ∞:

f(t) =
∫ ∞

−∞
f̂(ω)e2πiωt dω,

for all f ∈ L2(R) compactly supported. But, as seen in Chapter 3, this is an isometry inL2(R), so that

this formula actually works for all f ∈ L2(R). Indeed, recall that due to Parseval’s theorem, this is in

fact an isometric isomorphism and admits and adjoint F −1.

In the previous case of Fourier Series, the context was of functions defined on [0,T), T-periodic

functions or elements of the circle of radius 1. There, the functions were expressed as super-positions

of a countable collection of exponentials of the form e2πint/T, which have multiples of T as periods.

For functions defined on allR, the number of periods will be uncountable, given by all defined values

of 1/ω. Remember that in the case of G Hausdorff compact, the dual group Ĝ will be countable if

and only if G is second countable (and, since G is Hausdorff, will be metrizable as well). Hence, the

exponentials occur as a superposition to define every f ∈ L2(R), as before, but an uncountable one.

These exponentials will also be the all the bounded eigenfunctions for the derivative operator on R,
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which is a reason Fourier Transforms are so used in the theory of differential equations.

Note furthermore that the exponential functions t ↦−→ e2πiωt are periodic functions with period

1/|ω|. Hence, it is usual to say that this function “repeats it self” |ω| times as t increases to t + 1,

which is one of the main reasons to call |ω|, or even ω the frequency, and hence, call the codomain the

Frequency Domain.

4.4 Shannon-Nyquist Sampling Theorem, Limited Bands and Heisenberg’s

Uncertainty Principle

In the context of telecommunications, the concept ofBand Limited signals, i.e., signals that have only

a finite interval on frequency domain for which the signal is nonzero, is very important for numer-

ous reasons. One of them is that most circuits work as filters and they do not allow every frequency

to bypass or interfere in the system, which is good most of the times, because noise usually comes in

the form of high frequency perturbations, so having a smaller pass-band is positive to avoid toomuch

noise. Another reason is that the number of channels available for communications is restricted, so

many usersmust share the same channel and the way they do that is often to choose different frequen-

cies for the carrier, which is a signal used to code, transmit and decode the original signal. The process

of passing the information of the signal to the carrier can be done in numerous ways, for instance fre-

quency modulation (FM), amplitude modulation (AM) and phase modulation (PM).

For this to be possible, i.e., many users share the same channel, the band limitation of the signal is

essential to avoid interference and to be possible to later on decode the signal.

Now consider a band-limited signal. Without loss of generality, it is possible to suppose that this

signal is limited in the interval [−Bw/2, Bw/2], whereBw stands for Bandwidth. If this is not the case,

a simplemultiplication by a complex exponential e2πiω0t with a suitable ω0 will do the job. This is easy

to remember if one remember that the Fourier transform of a exponential in time is the Dirac’s Delta
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and that multiplication in time corresponds to convolution in frequency domain. Hence, doing a

convolution by the δ(ω0), by the sampling property, corresponds to translate the signal to be centered

at ω0.

Now, consider a signal f ∈ L2(R) that is compactly supported. If g = f̂ = F [f], then g can be

reconstructed by the Fourier series (note that here the assumption of the Fourier transform being real

is used, but can be extended by linearity to the complex case):

g(ω) =
∑
n∈Z

ĝ(n)
(
(−1)n
√
Bw

exp

(
2πinω
Bw

))
( |ω| < Bw)

where ĝ(n) is given by

ĝ(n) = (−1)n
√
Bw

∫ Bw/2

−Bw/2
g(x) exp

(
−2πinx
Bw

)
dx

=
(−1)n
√
Bw

∫ Bw/2

−Bw/2
F [f] (x) exp

(
−2πinx
Bw

)
dx

★
=

(−1)n
√
Bw

∫ ∞

−∞
F [f] (x) exp

(
−2πinx
Bw

)
dx,

where the equality in (★) uses the fact that the signal is band-limited. But since g = f̂ = F [f], one

may think that this should be (1/
√
Bw)f(−n/Bw) because of the inversion formula. However, this

is the same point discussed to the exhaustion at Chapter 1. Indeed, the Fourier Inversion Formula

works in L2(R) and thus, can not be applied pointwise. However, one should recall the discussion,

made at the section of Fourier on groups, about the existence of a continuous representative for the

equivalence class at L2. Here, it turns out that in fact the band limited functions are necessarily con-

tinuous, and, therefore, the inversion formula works pointwise. Thus, in this case, ĝ(n) will indeed

be (1/
√
Bw)f(−n/Bw). Hence, using the Fourier Series formula (the factors (−1)n cancel each other
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out):

f̂(ω) = F [f] (ω)
∑
n∈Z

f
(
−n
Bw

) (
1
Bw

exp

(
2πinω
Bw

))
(|ω| < Bw).

With this results and combining the Fourier Inversion formula and the fact that the signal is band-

limited, it is possible to prove the following result:

Theorem 23. Let f ∈ L2(R) be a band-limited signal with F [f] supported in [−Bw/2, Bw/2]. Then

f is completely determined by its values f(n/Bw), n ∈ Z and moreover:

f(t) =
∞∑
−∞

f
(
n
Bw

)
sin(π(n − Bwt))

π(n − Bwt)
=

∞∑
−∞

f
(
n
Bw

)
sinc(π(n − Bwt)).

Hence, if the range of frequencies of the signal f is Bw, then one can completely reconstruct the signal by

sampling with frequency 2Bw.

Proof. Without loss of generality, suppose that Bw = 1. Otherwise, a simple scaling or change of

units will do the job. Hence, the signal f will have band-width supported in [−1/2, 1/2], i.e., it will

be nonzero only for |ω| < 1/2.

Let g be a periodic function with period 1 such that g coincides with f̂ for |ω| < 1/2. The idea is

to prove that the coefficients of g coincide with the values f(n) for n ∈ Z. If the values of f ate the

integers are known then it is possible to know the g which gave f̂. Therefore, inverting the Fourier

Transform it is possible to recover f.

Begin expanding g in its Fourier series:

g(ω) =
∞∑
−∞

cne−2πinω, (♣)
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where the coefficients are given by:

c−n =
∫ 1/2

−1/2
g(ω)e−2πinω dω︸                    ︷︷                    ︸

[A]

=
∫ 1/2

−1/2
f̂(ω)e−2πinω dω︸                    ︷︷                    ︸

[B]

=
∫ ∞

−∞
f̂(ω)e−2πinω dω︸                  ︷︷                  ︸

[C]

= f(n). (q)

Recall that g is a periodic function, and thus, have a Fourier series, not theTransformwith frequencies

in all (R). The Fourier coefficients of g are given in the frequencies that are multiples of the funda-

mental frequency. The equality [A]=[B] is justified because g coincides with f̂ for |ω| < 1/2 and the

equality [B]=[C] is justified because f̂ is nonzero only in |ω| < 1/2. Finally, by Parseval’s Theorem,

the Inverse Fourier Transform will give the values of f(n).

The part of the process to uniquely determine f is done. More specifically, if the values of f inZ are

know, then, measuring the signal once at each unity time (which is twice the band-width maximum

frequency), it is possible to reconstruct f.

The process to in fact reconstruct f, however, is not yet clear. The goal now is to prove the recon-

struction formula stated at the theorem.

Since f̂ is band-limited, write f as the Inverse Fourier Transform of its Fourier Transform:

f(t) =
∫ ∞

−∞
f̂(ω)e−2πiωt dω.

However, f̂ is supported in [−1/2, 1/2], which implies that

f(t) =
∫ 1/2

−1/2
f̂(ω)e−2πiωt dω.

Since in [−1/2, 1/2], f̂ is given by (♣), it is possible to substite this sum in [A] for f̂ leading to

f(t) =
∫ 1/2

−1/2

( ∞∑
n=−∞

c−ne2πinωe−2πiωt
)
dω,
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where the minus sign at the exponent of (♣) was disregarded since the sum is infinite on the integers

and this will not affect the result.

Using (q), the coefficients c−n can be substituted by f(n) and, by Lebesgue’s DominatedConverge

Theorem, the order of the integral and the sum can be exchanged:

f(t) =
∞∑
−∞

(∫ 1/2

−1/2
f(n)e2πiω(n−t) dω

)
=

∞∑
n=−∞

(
f(n)

∫ 1/2

−1/2
e2πiω(n−t) dω

)
The integral at the end can be expressed more directly as:

∫ 1/2

−1/2
e2πiω(n−t) dω =

[
1

2πi(n − t) e
2πiω(n−t)

] 1/2
−1/2

=
sin(π(n − t))

π(n − t) = sinc(π(n − t)),

which gives:

f(t) =
∞∑
−∞

f(n) sin(π(n − t))
π(n − t) =

∞∑
−∞

f(n)sinc(π(n − t)).

□

It could be natural, after all this discussion about compactly supported Fourier Transforms to try

to consider compact supported functions in the time domain. However, this can not be done because

it turns out that it is impossible to have both f and F [f] compactly supported. This fact follows from

the following theorem that relates complex analysis and distribution theory:

Theorem 24 (Schwartz-Paley-Wiener). An entire function (complex-valued function that is holomor-

phic on the hole complex plane) F defined on Cn is the Fourier Transform of a distribution T of compact

suport if and only if for all z ∈ Cn

|F(z) | ≤ C(1 + |z|)NeB | Im(z) | ,

for some constants C,Nand B. Moreover, this distribution T will be supported in the closed ball of center
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0 and radius B and, if for every positive integerM there is a constant CM such that for all z ∈ Cn

|F(z) | ≤ CM(1 + |z|)−MeB | Im{z} | ,

then T is an infinitely differentiable function (actually a distribution induced by a function of such type)

and vice versa.

Proof. See [11]. □

As a particular case for this discussion, there is the result bellow:

Corollary 6 (Paley-Wiener). Let f be a compactly supported function in L2(R). Then its Fourier Trans-

form F [f] : ω ∈ R ↦−→ F [f] (ω) extends to be an analytic function ω ↦−→ F [f] (ω) : C −→ C

(hence, an entire function). Moreover, this function must be of exponential type, i.e.,

|F [f] (ω) | ≤ AeB |ω | (ω ∈ C)

for appropriate constants A, B > 0. Furthermore, the restriction to R of entire functions of exponential

type are precisely the Fourier Transforms of compactly supported functions in L2(R).

Proof. It is a straightforward consequence of the Theorem 24. □

There is an analogue version of Corollary 6 for the Inverse Fourier Transform concerning the last

part of Theorem 24, i.e., the band-limited functions are the restrictions to R of entire functions of

exponential type.

However, an entire function that is not identically zero can not vanish on any interval of positive

length (see [17]), and hence f and F [f] can not be both compactly supported.
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The Theorem 24 and Corollary 6 provided qualitative information about the fact that both the

function in time domain and its Fourier Transform in frequency domain can not be both compactly

supported at the same time, but they did not provide any quantitative information.

The quantitative information will be provided next and it is known as the Uncertainty Principle.

However, this quantitative version will concern functions that have some “localization” in time and

whose Fourier Trnasforms are also “localized” in a sense that will be made precise.

Let f ∈ L2(R) be a normalized function to have unitary norm, i.e.,
 f 2 = 1. Then f can be viewed

as a probability density function onR. The mean μ and the variance σ2 of fwill then be given by:


μ =

∫
R
t|f(t) |2 dt,

σ2 =
∫
R
(t − μ)2 |f(t) |2 dt.

This will be possible to calculate for compactly supported functions in L2(R), but it turns out to be

possible for general normalized functions f ∈ L2(R) as well.

Since the Fourier Transform is an isometry in L2(R),
 f̂ 

2
=

F [f]

2 =

 f 2 = 1, and hence it is

also possible to calculate the mean μ̂ and the variance (σ̂)2 for the Fourier Transform.

Theorem 25 (Heisenberg’s Uncertainty Principle). If f, f′, f′′, tf, t2f ∈ L2(R) with
 f  = 1, then

σσ̂ ≥ 1
4π

,

or, equivalently,

(∫ ∞

−∞
(t − μ)2 |f(t) |2 dt

)
︸                        ︷︷                        ︸

variance of t

(∫ ∞

−∞
(ω − μ̂)2 |̂f(ω) |2 dω

)
︸                           ︷︷                           ︸

variance of ω

≥ 1
16π2
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Proof. See [1]. □

4.5 Window Functions And The Short Time Fourier Transform

As shown in the introduction of this chapter, Fourier Transforms wreck the localization of the in-

formation that they provide, i.e., they provide the magnitude of the frequency components but not

when in time they occur. More over, being an isometric isomorphism in L2, under certain hypothe-

sis, they enable the reconstruction of the functions in L2. In fact, under certain hypothesis as well, for

some values of p, it is also possible to recover the functions, but not with the same inversion formula

that makes L2 such a natural space to work with. In all those cases, the role transform is required to

reconstruct the functions.

In fact, it may be the case that a small localized change in function on time domain will affect

meaningly the Fourier Transform and thus, all the Transform is required to reconstruct the function.

This is show in the following example:

Example 29. Consider a interval [0, a) ⊆ R, a > 0, and its characteristic function 𝟙[0,a) . Then,

calculating the Fourier transform:

F [𝟙[0,a) ] (ω) =
1 − e−2πiaω

2πiω
.

It is clear that, small shifts in the value of a can affect drastically the values of F [𝟙[0,a) ] (ω) for large

values of ω for example.

Similar examples prove that small changes in frequency domain can lead to very different time func-

tions when the Inverse Fourier Transform is taken.

As seen in the Introduction of this Chapter (Section 4.1), the STFT comes to try to remedy the

problem of time localization. More precisely, if g is a particular non identically zero function of com-
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pact support, thewindow function, such as g(t) = 𝟙[−r,r] , r > 0, or a bump function, then the STFT

consists of making translations of g, t ↦−→ g(t− a), and take the Fourier transform of these dislocated

window functions against the function f considered. Then, one can define the STFT, as the usual

Fourier Transform of this product, attempting to provide time localization (and this transform will

clearly depend on the value of a as well):

SF [f] (a, ω) = F [f(t)g(t − a)] (ω) =
∫
R
f(t)g(t − a)e−2πiωt dt,

whereSF stands for Short Fourier to abbreviate the Short Time Fourier Transform.

Of course the choice of g in most cases is not naive, and some good properties are chosen, such as

smoothness, continuity by parts, etc.

The STFT provides in fact some time localization, but it is not perfect for localization. Indeed, it

depends on the choice of another parameter, a, and the shape of the graph of the window function g

can affect the magnitude of the frequency components in the transform. Moreover, this localization

is limited by the Heisenberg’s Uncertainty Principle, i.e., forcing more time accuracy implies in more

uncertainty in the frequency domain. The difference to the usual Fourier Transform is clear, because

the FTprovides the exact frequency components, whilst the STFTprovides frequency bands. Forcing

a small value of σ implies large values of σ̂ and the best scenario occurs when window functions are

generated to have its width proportional to the reciprocal of σ̂.

Furthermore, the ability todetect certain frequencies dependon thewidthof thewindowfunction.

More precisely, for high frequencies ω such that the corresponding period 1/ω, ω ≠ 0, is smaller than

the width of the window, the STFT is reasonable to detect the presence of the frequency ω in such

an interval. However, when the frequency ω is small (and its respective period 1/ω is large), this will

not be the case, since the window will not be large enough to detect variations of f at that frequency.

Again, this can be viewed as a consequence of Heisenberg’s Uncertainty Principle: Choosing a large
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window (low time accuracy), it is possible to better resolve the frequencies.

4.6 ContinuousWavelet Transform

The Wavelet Transform still arises from the motivation to provide some localization in time and fre-

quency. However, as explained at the end of the last section, for that to be the case, i.e., for one to

obtain good information about some frequency component, the width of the window function can

not be totally arbitrary. In fact, to know some localization in time when a certain frequency ω occurs

in the function f, the length of the window function must be somewhat close to the associate period

1/ω.

The idea naturally is to try to use different windows to analyse the function f at different frequen-

cies. However, due toHeisenberg’s Uncertainty Principle, this will also imply a lower time resolution

when the window, that in this case will be a wavelet, is chosen to have a wider range.

At the introduction, the definition ofwaveletswas given. However, like in the case of the STFT, the

choice of the wavelet is important and should be smart to make the information about the function

that is being analysed more easy to decode.

Many analysis can be done but, in this section, the wavelets ψ will be compactly supported func-

tions in L2(R). Since there exists a finite closed interval I (hence with finite Lebesgue measure) such

that supp(ψ) ⊆ I, then L2(R) ⊆ L1(R). This comes from a more general fact that, given a measure

space (X,X, μ) with μ(X) < ∞, then, for 1 ≤ q < p < ∞, one has Lp(X,X, μ) ⊆ Lq(X < X, μ).

Hence, ψ ∈ L1(R), and here, another requirement will be imposed:
∫
R
ψ(t) dt = 0, i.e., ψ will have

mean zero. Other properties such as smoothness and continuity by parts will be often desired as well

and will depend on the context.

The idea of using different window lengths translates in the fact that, other than in the STFT case,

in the ContinuousWavelet Transform (WT), the window functions (wavelets) will not only be trans-
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lated but will also be scaled in the hope to obtainmore information for different values of frequencies

ω.

Given a particular function ψ that will be the mother wavelet, as discussed in the introduction, its

family of wavelets will be stretched and translated versions:

ψa,b =
1
√
a
ψ

(
t − b
a

)
(a ∈ R∗+, b ∈ R).

The argument of ψ in the definition of ψa,b is a translation by b to the right and a compression by a

factor of a. The factor 1/√a is not essential in the theory, but it is very convenient because it preserve

L2 norms, i.e.,
ψ2 = ψa,b2.

The Continuous Wavelet Transform can then be defined as a standar inner product:

Definition 40. The Continuous Wavelet Transform (WT) of a given function f ∈ L2(R) with

respect to a mother wavelet ψ is given by:

Wψ [f] (a, b) = ⟨ f, ψa,b⟩ =
∫
R

f(t) · ψ∗a,b(t) dt (a ∈ R∗+, b ∈ R),

which is the standard inner product in a Complex Hilbert Space.

Like in the case of FT, it would be desirable to invert the transform to recover some information

about the function in the timedomain. In the STFT, the inversion is also possible for certain functions

like in the FT, which is intuitive, since the STFT is itself a FT. For the WT, however, the situation is

more delicate and the result is given in the next theorem:

Theorem 26. Let ψ ∈ L2(R)∩L1(R) be a real valued function that satisfies the following requirement,

know as the admissibility condition:

cψ =
∫ ∞

0

|F [ψ] (ω) |2
ω

dω < ∞.

133



Then, for any f ∈ L2(R),

 f2 = √cψ
©«

∫
(a,b) ∈ (0,∞)×R

|Wψ [f] (ω) |2
da
a2

db
ª®®¬
1/2

.

Moreover, if f ∈ Lp(R), 1 < p < ∞, and the integral is interpreted in a distributional sense, then:

f(t) = 1
cψ

©«
∫

(a,b) ∈ (0,∞)×R

W[f] (a, b)ψa,b(t)
da
a2

db
ª®®¬ .

Example 30. Consider the HaarWavelet:

ψ(t) =


1, if 0 ≤ t < 1/2;

−1, if 1/2 ≤ t < 1;

0, if t > 1 or t < 0;

Then, its Fourier Transform is given by

F [ψ] (ω) =
(
1 − e−πiω

)2
2πiω

.

This is in fact admissible.

4.7 DiscreteWaveletTransformAndDiscretizationOfContinuousWavelet

Transform

Just as in the case of Fourier Transforms, one may wish to consider Wavelet Transform of discrete

signals. However, in the context of wavelets, the concept of Discrete Wavelet Transforms can mean

two different things, both very usual to see in this context. The first one is theWavelet TransformOf
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A Discrete Signal and the second is the Discretization Of The Continuous Wavelet Transform.

Both will be shorten by DWT and will be distinguished by the context and presented next.

Given a signal in the domain of Z, which will be a sequence f[n], its DWT consists of passing this

signal through a cascade of filters which, at each level, consists of one high pass filter and one low pass

filter. In the first step, the samples pass through a low pass filter with impulse response g, which will

result in the following convolution of signals:

y[n] = (f ∗ g) [n] =
∞∑

k=−∞
f[k]g[n − k] .

This same signal is also passed trough a high pass filter h. The outputs of the low pass filters are

called the approximation coefficients, whilst the coefficients of the high pass filters are called the

detail coefficients. These two filters must constitute a quadrature mirror filter of one another, i.e.,

the magnitude response is the mirror image around π/2 of the other filter. This process continues

with the outputs of the low pass filters (the approximation coefficients). This tree of filters is know as

a filter bank.

At each step, which continues only with the approximation coefficients, half of the samples are

discarded, which can be done by the Shannon-Nyquist Sampling Theorem. The approximation co-

efficients are subsampled by 2 and are further passed again by a low pass filter g and a high pass filter h

with half of the cut-off frequency of the previous ones, i.e.:


ylow =

∞∑
k=−∞

f[k]g[2n − k];

yhigh =
∞∑

k=−∞
f[k]h[2n − k]

At each step, this decomposition halves the time resolution because only half of each filter output

characterises the signal. On the other hand, each output has half the frequency band of the previous
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and thus the frequency resolution is doubled.

All this process of decomposition is illustrated in Figure 4.10 bellow.

f [n] h1 [n] 2 ↓

g1 [n] 2 ↓ h2 [n]

g2 [n]

2 ↓

2 ↓ h3 [n]

g3 [n]

2 ↓

2 ↓

Figure 4.10: Filter bank for Discrete Wavelet Transform.

Denoting the Subsampling Operator by ↓:

(y ↓ k) [n] = y[kn],

the sums for ylow and yhigh expressed before can be written in a more succinct form:


ylow = (f ∗ g) ↓ 2;

yhigh = (f ∗ h) ↓ 2

The other usual way to see the discrete wavelet transforms is the discretization of the Continuous

Wavelet Transforms. This is usually done to avoid redundancy of information and optimize calcula-

tions for computational performance. In the case of Haar wavelets for example, there is much redun-
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dancy information inW[f] (a, b). The wavelets in the family with a = 1, for example, constitute a

orthonormal set in L2(R):

{ψ1,m : m ∈ Z} = {𝟙[m,m+1/2) − 𝟙[m+1/2,m+1) : m ∈ Z}.

This is not a basis for the square-integrable function. It is in fact a basis for the piece-wise con-

stant functions on a interval such that the constant parts are the intervals defined by these functions

(endpoints at adjacent half integers).

Haar, however, in his originalwork (see [14]), showed that the following set is indeed aorthonormal

(Hilbert) basis for L2(R):

{ψ2n,2nm : n,m ∈ Z}.

Hence, every f in L2(R) can be expressed as a infinite linear combination of the projections against

these wavelets in the family:

f =
∑

n,m∈Z
⟨f, ψ2n,2nm⟩ψ2n,2nm =

∑
n,m∈Z

W[f] (2n, 2nm)ψ2n,2nm.

However, other works showed later that other admissible wavelets ψ can be used in place of the

Haar wavelet and still form aHilbert basis for L2(R). This is convenient for example when one wants

smoothness.
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A
Riesz-Thorin’s Interpolation Theorem

A.1 Riesz-Thorin’s Interpolation Theorem

During this section, the central aim is to explore the Riesz-Thorin’s Interpolation Theorem and show

some applications, particularly, Young’s Inequality previously mentioned in the last section. The

proof for this theorem uses a complex analysis theorem called the Hadamard Three-Lines Theorem,

which is the starting point to this section.
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In the proof of this Hadamard’s Theorem, the Maximum Principle will be used, that basically

says that if f(z) is a function of complex variable continuous in a domain† S and holomorphic (i.e.,

analytic) in the interior of this domain, then its maximum will be attained in the boundary of this

domain.

Theorem 27 (HadamardThree-Lines). Let F(z) be a continuous function and bounded in the domain

S = {z = x + iy : 0 ≤ x ≤ 1},

such that this function is also holomorphic in the interior of S. If for all y ∈ R it holds that |F(iy) | ≤ M0

e |F(1 + iy) | ≤ M1, then, for all z = x + iy ∈ S, one has that |F(x + iy) | ≤ M1−x
0 Mx

1 .

Proof. Suppose thatM0,M1 > 0 (which is the case of interest). Indeed, it suffices to prove forM0 =

M1 = 1 taking the auxiliary functionG(z) = F(z)
M1−z

0 Mz
1
. Hence, |G(iy) | ≤ 1 and |G(1+ iy) | ≤ 1. Then,

the goal is to prove that |G(z) | ≤ 1 for all z ∈ S.

Start definingGn(z) = G(z)e
(z2−1)

n for n ∈ Z+. Now, notice that

|Gn(z) | = |G(x + iy) |e−
y2
n · e x

2−1
n ≤ |G(x + iy) |e−

y2
n ,

since 0 ≤ x ≤ 1. Therefore, for any n ∈ Z+, the function Gn converges to zero 0 when |y| −→ ∞

uniformly in 0 ≤ x ≤ 1.

Also, observe that |Gn(iy) | = |G(iy) |e−
y2+1
n ≤ 1 and, therefore, it can be concluded in an analogous

way that |Gn(1 + iy) | = |G(1 + iy) |e−
y2
n ≤ 1. Since the functionGn converges to 0, there must exist a

|y0 | such that |y| ≥ |y0 | → |Gn(x + iy0) | ≤ 1. Hence, it is possible to see that in the boundary of the

rectangle with vertices (0, iy0); (1, iy0); (1,−iy0); (0,−iy0), the function is bounded by 1. Therefore,

†Here domain means only the domain of the function, i.e., the set in which the function is defined. In
Hadamard Three-Lines Theorem indeed, this domain will be a strip as will be clear when it is stated.
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by the maximum principle, this same limit applies in the interior of the rectangle. Hence, for every

n ∈ Z+, the result holds. As taking n → ∞, it converges to G(z), the desired result is valid for G(z),

concluding this proof. □

Definition 41. Let T : Lp → Lq be a bounded linear operator. the norm of this operator is defined as

| |T| |p, q = sup
| |Tf| |q
| |f| |p

= sup
| |f | |p=1

| |Tf| |q.

Observation8. Let h ∈ Lq, andq′ the conjugate of q. Then, it is possible towrite | |h| |q = sup | |g| |q′ = 1|⟨h,g⟩|

where ⟨h,g⟩ =
∫
h(y)g(y)dy.

The essence of the Riesz-Thorin’s Interpolation Theorem it to make possible to define a conver-

gence region and a bound for a operator, verifying only for certain pairs (p, q) where the operator

T : Lp → Lq is defined and bounded. That being said, now the main theorem of this section can be

stated and proved.

Theorem 28 (Riesz-Thorin’s Interpolation). Let T be a linear operator bounded in the spaces:

T : Lp0 → Lq0

and

T : Lp1 → Lq1 ,

satisfying | |T| |p0, q0 ≤ M0 and | |T| |p1, q1 ≤ M1. Define

1
pθ

=
1 − θ
p0

+ θ
p1

e
1
qθ

=
1 − θ
q0

+ θ
q1
.
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Then, | |T| |pθ, qθ ≤ M1−θ
0 ·Mθ

1 for 0 ≤ θ ≤ 1.

Proof. Start noticing that pθ, q′θ < ∞. Therefore, it is known that the class of simple functions

with compact support is dense in Lpθ and Lq′θ , allowing the proof to be made only for these class of

functions and the general case follows by density.

Consider then f ∈ Lpθ and g ∈ Lq′θ, both with unitary norm and being of the form f =
∑n

j=1 aj𝟙Ej

and g =
∑m

k=1 bk𝟙Ak , respectively. Let also p(z) and q′(z) be defined in the following way:


1

p(z) =
1 − z
p0

+ z
p1

1
q′(z) =

1 − z
q′0

+ z
q′1
.

Define φ(z) = ∑n
j=1 |aj |

pθ
p(z) · ei·arg(aj ) · 𝟙Ej and ϕ(z) =

∑m
k=1 |bk |

q′θ
q′ (z) · ei·arg(bk ) · 𝟙Ak . Notice that both

of these functions are continuous in the domain S defined in the Hadamard Three-Lines Theorem.

Moreover, being exponentials, they are also analytic in the interior of this domain and, therefore, the

function F(z) = ⟨Tφ,ϕ⟩ also has these properties. Now the goal is to verify that φ(iy) ∈ Lp0 and

φ(1+ iy) ∈ Lp1 , and, in an analogous way, that ϕ(iy) ∈ Lq′0 and ϕ(1+ iy) ∈ Lq′1 . To show that, notice

that |φ(iy) | = ∑
j = 1n |aj |

pθ
p0 · 𝟙Ej = |f|

pθ
p0 . Hence, | |φ(iy) | |p0 = | |f| |pθ

pθ
p0 = 1 because the norm of f is

unitary in Lpθ . The other claims can be verified in an entirely analogous way.

Due to the characterizationof thenormgiven in theObservation8, notice that |F(iy) | = |⟨Tφ(iy),ϕ(iy)⟩| ≤

| |T| |p0, q0 ≤ M0 and also |F(1 + iy) | = |⟨Tφ(1 + iy),ϕ(1 + iy)⟩| ≤ | |T| |p1, q1 ≤ M1, and, there-

fore, Theorem 27 can be applied. Since for z = θ one has that φ(θ) = f and ϕ(θ) = g, this leads to

|F(θ) | = |⟨Tf,g⟩| ≤ M1−θ
0 Mθ

1. Since this is valid for any f ∈ Lpθ and g ∈ Lq′θ with unitary norm, this

means that | |T| |pθ, q′θ ≤ M1−θ
0 Mθ

1, concluding the proof. □
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A.2 Applications

Now two verywell known results that can be proved using theRiesz-Thorin’s InterpolationTheorem

will be presented. The first one is known as the Hausdorff-Young Inequality and it is very important

in the development of the theory of Fourier Transforms.

Lemma 9 (Hausdorff-Young Inequality). Let f ∈ Lp(Rn), 1 ≤ p ≤ 2. Then, f̂ ∈ Lp′ (Rn) (where p′ is

conjugate to p, i.e.,
1
p
+ 1
p′

= 1) and | |̂f| |p′ ≤ ||f| |p, where f̂ represents the Fourier Transform of f.

Proof. First, recalling the theory of Fourier Transforms, it is already known that indeed it concerns a

linear operator T : L1 → L∞, such that T(f) = f̂ and also T : L2 → L2. Moreover, it is also known

that | |̂f| |∞ ≤ ||f| |1, hence | |T| |1,∞ ≤ 1, and, in L2, one has a unitary map and, therefore, one also

has | |T| |2,2 ≤ 1.

Thus, due to Riesz-Thorin’s Interpolation Theorem there must exist p, qwith

1
p
= 1 − θ + θ

2

and
1
q
= 0 + θ

2
,

such that | |T| |p, q ≤ 1. It is easy to see from the definition of p, q that 1 ≤ p ≤ 2 and
1
p
+ 1
q
= 1, hence

q = p′. Since
| |̂f| |p′
| |f| |p ≤ ||T| |p, p′, the fact that Tp,p′ is bounded implies the desired inequality. □

Finally, next the Young’s Inequality for convolutions will be presented. Its proof concerns an inge-

nious use of the Riesz-Thorin’s Interpolation Theorem.

Lemma 10 (Young’s Inequality). Let f ∈ Lp(Rn) and g ∈ Lq(Rn), with 1 ≤ p, q ≤ ∞, and
1
p
+ 1
q
≥ 1.
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Then, f ∗ g ∈ Lr(Rn), where 1
r
+ 1 =

1
p
+ 1
q
with

| |f ∗ g| |r ≤ ||f| |p · | |g| |q.

Proof. Start fixing a q and a g ∈ Lq, and defining a operatorT that makes the convolution of a certain

function with g. Now the idea is to verify that this operator is of the form (1, q) and (q′,∞).

To do that, let f ∈ L1, and consider the following calculation:

| |f ∗ g| |q =
(∫ ����∫ g(x − y)f(y)dy

����q dx) 1
q

≤
∫

f(y)
(∫

|g(x − y) |qdx
) 1

q

dy

≤ ||f| |1 · | |g| |q,

where the Minkowski inequality for integrals was used. Hence, it is possible to see that | |T| |1, q ≤

||g| |q. On the other hand, if f ∈ Lq′ , theHolder Inequality can be applied to conclude that | |f∗g| |∞ ≤

||f| |q′ | |g| |q, which implies that | |T| |q′,∞ ≤ ||g| |q.

That being said, due to Riesz-Thorin’s Interpolation Theorem, Tmust be of the type (p, r), satis-

fying the following conditions:

1
p
= 1 − θ + θ

q′

1
r
=
1 − θ
q

.

Subtracting the equations above the desired relation follows:

1
r
+ 1 =

1
p
+ 1
q
.
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□

Recall that the Fourier Transform was initially defined for functions f ∈ L1 as, the Fourier Trans-

form f̂ = F [f] as

F [f] (ξ) =
∫
Rn

f(x)e−iξ·x dx.

Then, in order to define the transform inL2, the central ideawas to use the density of the Schwartz’

ClassS, asS(Rn) is dense in L2(Rn). Hence, given f ∈ L2(Rn) the procedure was to take a sequence

of functions in S(Rn) (since S(Rn) is dense in L1(Rn) ∩ L2(Rn)), converging to f in the L2 norm,

i.e.,
f − fn


2

n−→∞−−−−−→ 0. Now, since the Fourier Transform is an isometry in L2, then
g2 = ĝ2 for

g ∈ S(Rn). Therefore, the sequence defined by f̂n is a Cauchy sequence in L2(Rn), and, hence, there

must exist a unique f̂ such that f̂n
n−→∞−−−−−→ f̂. The Fourier Transform of fwas defined as this limit f̂.

In the case where 1 ≤ p ≤ 2, the same idea can be applied because the Schwartz Class is actually

dense in Lp(Rn) for all 1 ≤ p < ∞ †. Therefore, given 1 < p < 2, it is possible to define the Fourier

Transform for functions in S(Rn) ∩ Lp(Rn). Therefore one can take in the same way a sequence of

functions inS(Rn) (sinceS(Rn) is dense in Lp(Rn) ∩ Lp′ (Rn)), converging to f in the Lp norm, i.e.,f − fn

p

n−→∞−−−−−→ 0 and the p′ is the conjugate of p (Hausdorff-Young Inequality). Now, it is known

that
f − fn


p

n−→∞−−−−−→ 0 (in particular it is a Cauchy sequence), due to Riesz-Thorin Theorems, there

will be induced a sequence f̂n in Lp′ , and since F is a bounded linear operator, this theorem implies

that the induced sequence will also be a Cauchy sequence in Lp′ . Finally, since Lp′ is complete (indeed

a Banach space), this sequence will converge to a unique limit f̂, and the Fourier Transform of f ∈ Lp

will be defined as this f̂ ∈ Lp′ .

†For L∞ this is not true as the constant function F ≡ 1 is in L∞ and can not be approximated by functions
in S, since they are of slow growth and therefore the L∞ norm will not go to zero outside any interval that is
not the entire space.
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B
Codes To Generate The Figures Presented

In The Signal Processing Subsection

In this appendix, the codes to generate the figures of the signal, the STFT’s and theWavelet Transform

graphics will be presented.
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B.1 CodeForTheGraphicofTheChirp SignalWithHighFrequency Inter-

jections

The code presented bellow plots the chirp signal with high frequency interjections using Python lan-

guage.

1 from pywt import cwt, frequency2scale, ContinuousWavelet

2 import numpy as np

3 from scipy.signal import stft

4 import matplotlib.pyplot as plt

5

6 plt.style.use(”ggplot”)

7

8 dt = 0.01

9 time = np.arange(0, 200, dt)

10

11 signal = np.sin(time * (100*(time//25*dt)) + 50)

12 plt.plot(signal)

13

14 f, t, short_time = stft(signal, fs=1/dt)

15 plt.imshow(np.abs(short_time))

16 plt.show()

17

18 frequencies = np.linspace(100, 25, 2000) * dt

19 scale = frequency2scale(’cmor1.5-1.0’, frequencies)

20 wav = ContinuousWavelet(’cmor1.5-1.0’)

21

22 coefs, f = cwt(signal, scale, wav)
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23 plt.imshow(np.abs(coefs))

24 plt.show()

B.2 Code For The Graphics of two STFT’s and a WT of The Chirp Signal

WithHigh Frequency Interjections

This other code presented next provides and plots two STFT’s and a WT for the chirp signal with

high frequency interjections also using Python language.

1 import pywt

2 import numpy as np

3 from scipy.signal import stft

4 import matplotlib.pyplot as plt

5

6 cmap=”magma”

7

8 fs = 44100

9 length = 10e-3

10 n_samples = np.int(length*fs)

11

12 time = np.linspace(0, length, n_samples)

13 signal = 2*np.cos(2*np.pi*500*time * (time // (50/fs)))

14 signal[85:88] = 0

15 signal[300:304] = 0.5

16

17 signal = signal - signal.mean()

18

19 plt.style.use(”ggplot”)
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20 plt.plot(time, signal)

21 plt.xlabel(”Time [s]”)

22 plt.ylabel(”Amplitude”)

23 plt.title(”Time Domain Signal”)

24 plt.show()

25

26 plt.style.use(”default”)

27

28 f, t, short_time = stft(signal, fs=fs, nperseg=8)

29 plt.imshow(abs(short_time), cmap=cmap, extent=[t[0], t[-1], f[-1], f[0]],

30 aspect=”auto”, interpolation=”bilinear”)

31 plt.xlabel(”Time [s]”)

32 plt.ylabel(”Frequency [Hz]”)

33 plt.title(”Short Time Fourier Transform with Window Size 8”)

34 plt.colorbar()

35 plt.show()

36

37 f, t, short_time = stft(signal, fs=fs, nperseg=256)

38 plt.imshow(abs(short_time), cmap=cmap, extent=[t[0], t[-1], f[-1], f[0]],

39 aspect=”auto”, interpolation=”bilinear”)

40 plt.xlabel(”Time [s]”)

41 plt.ylabel(”Frequency [Hz]”)

42 plt.title(”Short Time Fourier Transform with Window Size 256”)

43 plt.colorbar()

44 plt.show()

45

46 scales = np.arange(1, 21, 1)

47
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48 coef, freqs = pywt.cwt(signal, scales, ”mexh”)

49 plt.figure(figsize=(15, 10))

50 plt.imshow(abs(coef), cmap=cmap, extent=[0, 10e-3, 20, 1],

51 interpolation=”bilinear”, aspect=”auto”)

52 plt.gca().invert_yaxis()

53 plt.xticks(np.arange(0, n_samples/fs, 2*n_samples/(20*fs)))

54 plt.yticks(scales)

55 plt.colorbar()

56 plt.xlabel(”Time [s]”)

57 plt.ylabel(”Scale [s]”)

58 plt.title(”Wavelet Transform”)

59 plt.show()
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